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57 An Introduction to Time-Resolved
Decoding Analysis for M/EEG

THOMAS A. CARLSON, TIJL. GROOTSWAGERS, AND AMANDA K. ROBINSON

ABSTRACT The human brain is constantly processing infor-
mation in order to make decisions and interact with the world
for tasks ranging from recognizing a familiar face to playing
a game of tennis. These complex cognitive processes require
communication between large populations of neurons. The
noninvasive neuroimaging methods of electroencephalogra-
phy (EEG) and magnetoencephalography (MEG) provide pop-
ulation measures of neural activity with millisecond precision
that allow us to study the temporal dynamics of cognitive
processes. However, multisensor M/EEG data is inherently
high dimensional, making it difficult to parse important sig-
nals from noise. Multivariate pattern analysis (MVPA) or
decoding methods offer vast potential for understanding
high-dimensional M/EEG neural data. MVPA can be used to
distinguish between different conditions and map the time
courses of various neural processes, from basic sensory pro-
cessing to high-level cognitive processes. In this chapter we
discuss the practical aspects of performing decoding analyses
on M/EEG data, as well as the limitations of the method, and
then review some applications for understanding representa-
tional dynamics in the human brain.

One of the most remarkable aspects of the human brain
is its speed and processing efficiency. A familiar friend
is recognized in an instant, speech communication feels
like a natural dynamic exchange, and we can make split-
second decisions in life-threatening situations. A crucial
question in cognitive neuroscience is how the brain
manages such complex tasks with ease. As noninvasive
brain-imaging techniques with millisecond resolution,
magnetoencephalography and electroencephalogra-
phy (M/EEG) offer unparalleled potential in captur-
ing the dynamics of human cognition. Multivariate
pattern analysis (MVPA or decoding) methods, in con-
junction with M/EEG data, give insight into the tempo-
ral dynamics of information processing in the brain.
Such methods yield insight not only into the time
course of specific cognitive processes but also into the
relative order of different cognitive processes. This can
lead to increased understanding of the temporal
dynamics of brain representations—for example, how
low-level visual representations are transformed into
high-level object representations (Contini, Wardle, &
Carlson, 2017).

When MVPA was first introduced to functional
magnetic resonance imaging (fMRI), it gave cognitive
neuroscientists the unprecedented capacity to decode
information in the brain (for recent reviews, see Haxby,
2012; Haynes, 2015; Tong & Pratte, 2012). MVPA in com-
bination with fMRI’s excellent spatial resolution enabled
researchers to target and scrutinize the information
represented in different brain areas. MVPA methods
for M/EEG data complement fMRI findings by provid-
ing valuable insight into the time course of neural pro-
cessing. Accordingly, M/EEG decoding methods are
becoming increasingly popular in the cognitive neurosci-
ence community.

Most cognitive neuroscientists are aware of decoding
methods, as they have been actively used in fMRI
research for two decades. Interestingly, methods for
decoding mental states from the brain predate this
work by a quarter century. Vidal first developed these
methods for EEG in the context of brain-computer
communication, asking the provocative question “Can
observable electrical brain signals be put to work as car-
riers of information in man-computer communication
or for the purpose of controlling such external appara-
tus as prosthetic devices or spaceships?” (Vidal, 1973,
p. 157). Vidal’s and subsequent work focused on the
practical applications of having access to the brain’s
internal mental states. Many useful applications for
decoding methods exist in M/EEG research, including
brain-computer interfaces (BCI; e.g., Wolpaw et al,,
2002), lie detection (e.g., Davatzikos et al., 2005), and
the diagnosis of brain disorders (e.g., Ewers etal., 2011).
Practical applications such as these place greater weight
on performance over explanation. If diagnostic accu-
racy for schizophrenia using a particular method is
increased by 2%, this represents a significant achieve-
ment that can have wide-reaching benefits. In contrast,
the cognitive neuroscientist is interested in how the
brain works. Here, the priority is to elucidate the neu-
ral mechanisms underlying cognitive processes, and
metrics like prediction accuracy are of lesser impor-
tance (Hebart & Baker, 2017). The cognitive neurosci-
ence application of decoding methods for M/EEG is
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the topic of this chapter. Henceforth, we will use the
term decoding to reference the use of this method for
understanding the brain.

This chapter focuses explicitly on time-resolved
decoding analysis for M/EEG. MVPA can be applied to
M/EEG data (frequency analysis, wavelet decomposi-
tion, connectivity, and more) in a variety of domains.
We will limit the scope of our discussion to time-series
decoding, but many of the same principles apply to
other domains. This research uses paradigms that
closely resemble EEG’s event-related potential (ERP) or
MEG’s eventrelated field (ERF) research. In these
experiments, participants are presented with stimuli
(e.g., images, sounds, and others) from different condi-
tions (e.g., faces vs. houses; attended vs. unattended),
and the analysis is time locked to the presentation of
the stimulus. MVPA and ERP/ERF analyses both seek
to determine any differences between experimental
conditions. The main difference is that ERP/ERF
research uses a univariate approach, such as testing for
differences between conditions from a single recording
site or from data averaged across multiple sites. MVPA,
in contrast, utilizes pattern information across record-
ing sites and thus is often a more sensitive measure. As
the topic of this chapter is MVPA, we will not discuss
further differences between the approaches except to
make illustrative points (for more information, see
Grootswagers, Wardle, & Carlson, 2017; Hebart & Baker,
2017). For those interested in ERP/ERF analysis or
more general information about the analysis of EEG
recordings, we refer the reader to the excellent text on
ERP research by Luck (2005).

The fundamental goal of the decoding analysis is to
learn what and how information is represented by the
brain (see chapters 56 and 58). M/EEG recordings are
a measure of brain activity with high temporal resolu-
tion, and MVPA is a sensitive measure to determine
whether or not any information in the recordings can
distinguish between experimental conditions. The
combination of the two can tell the researcher if there
is information in the recordings of brain activity that
can distinguish experimental conditions for each point
in time. Going beyond this to address the more critical
questions of “what” and “how” information is repre-
sented in the brain requires specific knowledge of the
field of inquiry, which requires the development of
robust experimental paradigms.

The goal of this chapter is to inform readers with
little MVPA experience about the mechanics of apply-
ing these methods to M/EEG data and guide research-
ers on using these methods to answer the critical
questions of “what” and “how” information is repre-
sented in the brain. We assume the reader has a basic
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knowledge M/EEG and thus will focus on the practical
details of decoding analyses rather than aspects of
conducting M/EEG experiments. We also note that
M/EEG-MVPA is a relatively new field of research. On
the one hand, this means that many exciting new theo-
retical questions can be explored using these powerful
analysis methods. On the other hand, it means the
techniques themselves are still evolving, and there is
currently limited technical guidance (see Grootswa-
gers, Wardle, & Carlson, 2017 for an advanced tutorial).
At times, we will give recommendations based on our
own experience that lack a scientific reference. We
expect many of these recommendations to be followed
up empirically in the coming years.

In this chapter, we first provide a foundation by situ-
ating pattern analysis methods in the context of M/EEG
data. We then discuss some of the intricacies of using
decoding methods for analyzing M/EEG data. We then
conclude with a section describing advanced methods
to familiarize the reader with more sophisticated
approaches to time-resolved decoding.

The Basics of Time-Resolved Decoding
Analysis for M/EEG

To give intuition to the analysis and a framework for
discussion, we describe a hypothetical experiment.
Consider a standard EEG system with 64 sensors
(figure 57.14), each of which continuously measures
local electrical currents on the scalp (figure 57.1B). In
each trial, participants are shown an image of either an
Xoran O, and there are 40 trials for each condition. To
simplify the description of the analysis, we start by con-
sidering only two electrodes centered on the occipital
cortex (e.g., Ol and O2) and data from a single time
point (e.g., 100 ms poststimulus onset). This narrow
slice of data can be represented as a two-dimensional
scatterplot (figure 57.1C). In the plot, the two axes are
the measurements from the two electrodes in micro-
volts (pV) for the single time point. The 80 data points
are the measurements recorded for the individual
trials, denoted by Xs and Os. In this simplified sce-
nario, the EEG data take the form of the familiar dia-
gram given in virtually all texts describing pattern
classification analysis (e.g., Duda, Hart, & Stork, 2001).

Pattern classification analysis is used to determine if
there is information in the EEG measurements that
can predict whether the participant was viewing an Xor
an O on a given trial. The analysis is a two-step process.
The first step is to train the classifier to find a decision
boundary that best separates the Xs and Os using the
EEG data. For the purposes of this initial description,
we use a linear classifier, which uses a linear decision
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FIGURE j7.1 Time-resolved decoding analysis for M/EEG. A,
Top-down view of a channel layout for a 64-channel EEG. B,
Sample recording data from an EEG experiment. C, Scatter-
plot showing hypothetical EEG data from a single time point
for a decoding experiment. The two axes are the measured
current from two EEG electrodes. The points are individual
trials for the Xand O conditions. The line denotes the optimal
decision boundary for classifying Xs and Os derived from the
generative model. D, Four iterations of cross-validation using

75% of the data to train the classifier and 25% to test the clas-
sifier. The top row of plots show the training data along with
the classification boundary computed using linear discrimi-
nant analysis (LDA) for each iteration. The plots below show
the test data for each iteration with the decision boundary
computed from the training data. E, An example of a time-
resolved decoding analysis showing classifier accuracy aver-
aged over participants. Data from Grootswagers, Ritchie,
Wardle, Heathcote, and Carlson (2017).
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boundary for classification. In the plot in figure 57.1C,
the observations to the left of the boundary are classi-
fied as Os, and those to the right of the boundary are
classified as Xs.

The second step is testing the classifier, in which a
trained classifier is used to predict whether the partici-
pant was viewing an X or an Oin a new set of trials. It is
essential to use independent data for the two steps
(training and test) to show that the classifier can gener-
alize to independent data outside the training sample.
For this, we use cross-validation, which involves split-
ting the data into training and test sets. In this exam-
ple, we divide the data into four blocks and use 75% of
the data to train the classifier and the other 25% to test
the classifier. The classifier is trained four times, each
time using three blocks of data to train the classifier
and the remaining block to test the classifier (fig-
ure 57.1D). The average prediction accuracy (perfor-
mance) of the classifier across the four iterations is
taken as an estimate of decoding performance for clas-
sifying Xs and Os from the EEG data at this time point.
Importantly, if the classifier accuracy is above chance
(i.e., 50%), this is taken as evidence there were different
patterns of activation across the two channels when the
participant viewed an Xor an O.

To bring this simplified scenario back to a full
M/EEG data set is only a matter of scaling up. First,
instead of limiting the analysis to two channels, all of
the channels or a selected subset of the channels is used
for the analysis. Second, the analysis is repeated for
every time point instead of only on a single time point.
The result is a time-varying measure of stimulus/condi-
tion decodability (figure 57.1FE). Finally, the experiment
is repeated in multiple subjects to enable statistical
inference, treating the subject as a random effect (see
the section on statistical assessment).

The above provides a broad overview of the critical
features of decoding analysis for M/EEG. In the follow-
ing sections, we go into more detail about the steps in
the analysis and discuss specific issues for the analysis
of M/EEG data.

Practical Aspects of M/EEG Decoding Analysis

On preprocessing M/EEG data for multivariate pattern
analysis  M/EEG data is inherently noisy, picking up
electrical activity from a variety of nonbrain sources,
such as muscle activity, eye movements, and environ-
mental noise. M/EEG research uses many preprocessing
procedures to reduce this noise, such as filtering, resam-
pling, and artifact rejection. The goal of preprocessing is
to increase the signal-to-noise ratio (SNR), reducing the
probability of obtaining a false negative (i.e., failing to
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observe an effect that is present). Preprocessing pipe-
lines can vary between different laboratories (and even
across individual researchers in a laboratory), as there is
no consensus on preprocessing pipelines. The variability
in preprocessing pipelines has been identified as an
important issue for reproducibility in neuroimaging
research (Poldrack et al., 2017). In developing a prepro-
cessing pipeline, one thus needs to balance the desire to
maximize SNR with minimizing the number of prepro-
cessing steps to ensure the results are robust.

The analysis of ERP/ERF in EEG/MEG, respectively,
has been around for decades, while decoding methods
are relatively new. A natural starting point for thinking
about a preprocessing pipeline for M/EEG decoding
analysis might be to adopt established methods from
ERP/ERF research (Luck, 2005). However, MVPA is
different from ERP/ERF analyses, and thus the prepro-
cessing steps need not be the same. In particular, decod-
ing is more robust to artifacts than these other methods.
Standard classifiers, such as linear discriminant analy-
sis (LDA) and support vector machines (SVM), implic-
itly model the noise in the data. Therefore, classifiers
can replace steps that typically require laborious man-
ual inspection, such as bad sensors and artifact rejec-
tion. To understand this, we need to look at how
machine-learning classifiers like LDA and SVM maxi-
mize the prediction.

First, the classifier assigns weights to each sensor.
High weights enhance information in the measurement
that informs the classification, and low weights suppress
uninformative information in the measurement. This
aspect is relevant because it potentially makes some
preprocessing procedures redundant. In the context of
EEG, an example is a broken or very low impendance
electrode. In a standard ERP analysis, this electrode
would be removed or interpolated during preprocessing.
For MVPA, this step can be omitted because the classi-
fier would learn in training that the noisy electrode is
not informative for the prediction and would assign it a
low weight. Note also that channel interpolation is a
linear combination of surrounding electrodes and thus
adds no additional information to the classifier. Eyeb-
link and muscular artifacts are other examples. For
ERP analysis, these artifacts can have a significant effect
on the quality of the data and thus need to be removed.
For MVPA, these artifacts are of lesser concern. If the
artifact is not informative for the prediction, the classi-
fier will suppress the artifacts by giving low weight to the
component of the signal related to the artifacts. Remov-
ing trials with eyeblink artifacts is thus another prepro-
cessing step that potentially could be removed from the
MVPA preprocessing pipeline (Grootswagers, Wardle,
& Carlson, 2017). Note that artifacts confounded with
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the conditions of interest are a serious concern for all
(MVPA and ERP) analyses!

Second, classifiers can cancel noise in the data to
improve the prediction. This is relevant when consider-
ing the effect of environmental noise. For ERP analysis,
a noisy channel increases variance in the estimate of
the average evoked response, and thus it is advisable to
interpolate noisy channels or exclude them from the
analysis. In contrast, classifiers (e.g., LDA) can use the
information about the noise to improve prediction. For
example, suppose we have two hypothetical channels.
One channel contains brain activity differentiating the
two experimental conditions and also environmental
noise. The second channel is far from the source of
brain activity and only contains the environmental
noise. The classifier can use an estimate of the environ-
mental noise from the second channel and subtract it
from the first channel so that what remains is the signal
that differentiates the two experimental conditions.
Including the noisy channel can therefore give the clas-
sifier moreinformation about the signal of interest than
if the channel had been removed (Averbeck, Latham,
& Pouget, 2006; Haufe et al., 2014).

In summary, MVPA is a relatively new approach to
analyzing M/EEG data that does not have stringent
noise-reduction requirements, as do typical ERP analy-
ses. The critical lesson to be taken concerning prepro-
cessing is that MVPA can inherently deal with some
noise and artifacts in the data. This is an advantage of
the decoding approach because it reduces data-
processing steps relying on subjective criteria (e.g., the
interpolation of noisy channels identified by visual
inspection). While systematic research is still required,
M/EEG MVPA research will need to develop its own
guidelines for preprocessing. These new standards will
need to take into account how classifiers operate to
strike a balance between optimizing SNR and minimiz-
ing the number of preprocessing steps and options for
reproducible research (Poldrack et al., 2017; for early
explorations into the effect of preprocessing pipelines
on M/EEG decoding, see Grootswagers et al., 2017).

Classifier selection Decoding analysis generally favors
linear classifiers. As the name implies, linear classifiers use
a linear boundary (e.g., see figure 57.1) or a hyperplane
for greater than two dimensions for classification. Com-
pelling arguments have been made for the use of linear
classifiers in fMRI research (Kriegeskorte, 2011; Misaki
et al., 2010; Muller, Anderson, & Birch, 2003; Mur, Ban-
dettini, & Kriegeskorte, 2009; Pereira, Mitchell, & Botv-
inick, 2009; Schwarzkopf & Rees, 2011). In contrast, there
has been little systematic discussion of this for M/EEG.
Below, we give an overview of the different classifiers

available for M/EEG decoding research and step into the
fMRI community’s argument for linear classifiers, dis-
cussing them in the context of M/EEG.

Although nonlinear classifiers have the added capac-
ity to fit more complex class boundaries using nonlin-
ear terms, in practice they generally perform equal to
or worse than their linear counterparts in neuroimag-
ing decoding studies (Misaki et al., 2010). This is
because the increased flexibility of nonlinear classifi-
ers comes at the cost of overfitting, which limits gener-
alization performance. Furthermore, the results from
nonlinear classifiers are harder to interpret. As previ-
ously noted, it is also essential to keep in mind that
cognitive neuroscience applications of MVPA focus on
understanding the brain, where improvements in per-
formance are of marginal value (see the introduction
to this chapter). A small increase in performance is a
hefty price for the loss of interpretability, which we dis-
cuss below. Thus, unless there is substantial justifica-
tion, linear classifiers are the preferred method for
cognitive neuroscience applications of MVPA for the
analysis of M/EEG data.

Linear classifiers have two interpretive advantages
from a cognitive neuroscience perspective. First, linear
classifiers are a biologically plausible form of a “read-
out” (DiCarlo & Cox, 2007). Specifically, the informa-
tion used by a linear classifier could also be “read out”
by a single downstream neuron (Kriegeskorte, 2011;
Misaki et al., 2010). In the context of M/EEG, this is less
compelling. Embedded in this reasoning is the fact that
the downstream neuron has access to the same infor-
mation as the classifier (Carlson et al., 2017). A single
EEG channel records the aggregated activity of thou-
sands of neurons from different brain regions, and the
entire EEG cap has access to most of the neurons on
the cortical surface. It is not biologically plausible that
a single neuron has access to all the information repre-
sented on the cortical surface.

The second interpretive advantage is that linear clas-
sifiers produce weight maps that can be visualized to
gain insight into the source of decodable information
(Kamitani & Tong, 2005). An fMRI-MVPA experiment
studying faces, for example, might show that voxels in
the fusiform face area (FFA; Kanwisher, McDermott, &
Chun, 1997) are given high weights. The weight maps
thus can be used to infer that the FFA is a strong candi-
date source of decodable information. Similarly, for
M/EEG, the classifier weights can be projected back to
the topographical map of the sensors to gain insight
into the source of decodable information (but see
Haufe et al. [2014] and the discussion below).

The final point of discussion is the choice of classi-
fier. In a recent study, we compared the performance of
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five classifiers when decoding minimally preprocessed
MEG data: LDA, Gaussian naive Bayes (GNB), linear
SVMs, Spearman’s rank correlation, and Pearson’s cor-
relation (Grootswagers, Wardle, & Carlson, 2017). The
study found that SVM, LDA, and GNB performed the
best, suggesting that they are all excellent choices for
M/EEG decoding studies.

Localizing the source of decodable information in M/EEG
Cognitive neuroscientists are often interested in both
spatial (i.e., where) and temporal (i.e., when) signa-
tures of neural processing. Recovering the underlying
source(s) of neural activity is a long-standing challenge
for M/EEG research. This challenge extends to M/EEG
decoding research, although advanced decoding meth-
ods do offer at least one possible solution (see the sec-
tion on representational dynamics). In this discussion
it is essential to make a distinction between resolution
and spatial precision. Resolution is the capacity to
resolve two points in space. Using MVPA, MEG studies
have shown that it may be possible to resolve activation
patterns spanning V1 columns that are just a millime-
ter in width (Cichy, Ramirez, & Pantazis, 2015; Wardle
et al.,, 2016). These results highlight the remarkable
sensitivity of MVPA for detecting subtle differences in
patterns of activation. However, localizing the precise
source of this neural information (i.e., spatial preci-
sion) remains an ongoing challenge.

Broadly, three methods can be used to localize
sources in the brain using MVPA. Below, we will discuss
two of these methods; the third will be presented later
in the chapter. The first approach is weight projection.
MVPA returns both a performance metric (e.g., percent
correct) and the weights used by the classifier to make
the prediction. The more informative the sensor, the
higher the weight. One straightforward means of iden-
tifying the source of decodable information is to plot
the weights on the scalp map. When interpreting these
maps, it is important to consider the definition of injfor-
mative (c.f., de-Wit et al., 2016; Haufe et al., 2014). Previ-
ously, we discussed the three ways classifiers optimize
their performance. In addition to weights being assigned
to distinguish condition-specific information, weights
are also used by the classifier to suppress noise. When
using the weight projection method to interpret the
underlying sources, it is thus essential to consider only
weights that reflect the differences between conditions
(Grootswagers, Wardle, & Carlson, 2017; Haufe et al.,
2014). The second approach is to extract multivariate
brain activity from a region of interest (ROI) for MVPA.
The most straightforward variant of this is to select sen-
sors located above the ROI—for example, using ten
sensors over the occipital cortex to study early visual
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processing. This can also be applied in a sensor-
searchlight approach (similar to fMRI; see Haynes
etal., 2007; Kriegeskorte, Goebel, & Bandettini, 2006),
in which the analysis is repeated on local clusters of
sensors, providing a scalp map of decoding accuracies
(e.g., see Collins, Robinson, & Behrmann, 2018; Kaiser,
Oosterhof, & Peelen, 2016).

These two methods are subject to interpretive criti-
cism arising from the fact that brain activity will propa-
gate outside the M/EEG sensors located above a source
(information loss), and brain activity from nearby areas
will propagate into the selected sensors (information
leakage). Nevertheless, it can be a useful means for
gross localization (e.g., left vs. right hemisphere) in
some circumstances, and the limitations in its inter-
pretability are transparent. Alternatively, the sensor-
level data can first be projected into source space using
source reconstruction methods such as minimum norm
estimate (MNE; Hamalainen & Ilmoniemi, 1994) and
beamforming (Hamalainen & Ilmoniemi, 1994; Van
Veen et al., 1997). Multivariate time-series data can be
reconstructed using these methods using virtual voxels
in an ROI, and decoding analyses can be performed for
different ROIs. As with univariate analysis, the quality
of the source reconstruction can be improved using
anatomical MRI data from the participant and fMRI
data to precisely define the ROI. Notably, these more
sophisticated methods for localization are also subject
to issues of information loss and leakage (Brookes,
Woolrich, & Barnes, 2012; Gohel et al., 2018; Hipp
et al., 2012; Nolte et al., 2004; Sato et al., 2018), but the
algorithms will attempt to minimize their effect.

In summary, MVPA is a sensitive measure for differenti-
ating conditions based on the evoked spatial distribution
of activity from M/EEG. The MVPA approach, however,
remains limited for localizing sources, which stems from
the fundamental inverse problem for M/EEG.

Statistical assessment of information at the group level Time-
resolved MVPA tests the presence of information at the
group level. That is, we want to know whether across
our sample of subjects, classifier performance is higher
than would be expected by chance. There are multiple
proposed methods to assess this, and there is no con-
sensus about the optimal approach. Group-level classi-
fier accuracies can, for example, be tested against
chance using a t-test, or nonparametric tests such as a
sign-rank test (Wilcoxon, 1945) or permutation test
(Oostenveld etal., 2011). Because these tests are repeated
at each time point, they must also be corrected for mul-
tiple comparisons—for example, using Bonferroni,
false discovery rate (FDR; Nichols & Holmes, 2002), or
cluster-based corrections (e.g., Oostenveld et al., 2011;
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Smith & Nichols, 2009; Stelzer, Chen, & Turner, 2013).
As with the choice of test statistic, there is no consensus
on the optimal method for correcting multiple com-
parisons. Thus, the choice of statistical analysis must be
guided by the experimental questions (see Allefeld,
Gorgen, & Haynes, 2016; Hebart & Baker, 2017; Thirion
et al., 2015).

Advanced Methods for M/EEG Decoding: Represen-
tational Dynamics

Exemplar-based decoding methods expand on categor-
ical approaches by studying the structure of how infor-
mation is represented. Figure 57.2A, B, shows the
difference between the two approaches. The two parts
of the figure show a reconstruction of the brain’s repre-
sentation of 24 objects from MEG data 140 ms after the
onset of the stimulus (data from Carlson et al., 2013).
The stimulus set included 12 animate objects (e.g.,
camel and alligator) and 12 inanimate objects (e.g.,
chair and kiwi fruit). In the category decoding approach
(figure 57.2A), the stimuli are treated as equivalent
class members (labeled A=animate or /A=inanimate),
and the analysis is conducted using standard methods
(see the section on the basics of time-resolved decod-
ing). If the analysis shows the classifier can decode
animate and inanimate objects from the MEG data,
this is evidence that the brain representation of the
stimuli is encoding object animacy.

Exemplar-based decoding methods study how the indi-
vidual exemplars of each category are represented. Here,
the decoding analysis is run for all possible pairwise com-
binations of exemplars—including within-category. The
decodability (i.e., classification performance) of each pair
is taken as a measure of “distance” between the two items
in the neural representation (Walther et al., 2016). Fig-
ure 57.2B demonstrates this approach to plotting the
individual stimuli. A line connecting the object exem-
plars in the figure indicates the decodability of the con-
nected pair. The length of the line is proportional to
decodability—that is, stimuli that are close to one another
(@ human and a monkey face) are less decodable than
stimuli that are far apart (e.g., a monkey and a television)
at the given point in time during visual processing.

Representational similarity analysis (RSA; Krieges-
korte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini,
2008) is the standard framework for hypothesis testing
for the exemplar-based decoding approach. In the
RSA, the pairwise decodability of the stimuli from the
brain recordings is encoded in a representational dis-
similarity matrix (RDM; figure 57.2C). The rows and
columns of the matrix correspond to individual exem-
plars, and each cell is the neural decodability between

the two exemplars. Hypotheses are tested by construct-
ing model RDMs that make predictions about the struc-
ture of the brain representation. An animacy model,
for example, predicts that animate and inanimate
objects form separable clusters in the representation.
Formally, the animacy model predicts that objects
within the animate and inanimate object categories
will be close to one another (distance =0), and objects
that span the category boundary will be far apart (dis-
tance=1; see figure 57.2C). To test the model, the
entries of the observed neural RDM are correlated with
the model RDM. For the animacy model, a high corre-
lation between the neural RDM and the model allows
us to conclude that animacy is represented in the brain.

The exemplar-based decoding approach taken in RSA
makes the structure of the representation and the models
more explicit, which has many advantages (Kriegeskorte
& Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008;
Nili et al., 2014). The exemplar-based analysis can be used
to study the time-varying structure of brain representa-
tions using M/EEG. As before, the analysis and model
testing are performed on all of the time points. By exam-
ining how brain representations emerge over time, we
gain a deeper understanding of how information is
dynamically transformed and represented in the brain.
Figure 57.2D shows the time-varying analysis from a MEG
data set with a more extensive stimulus set using several
different category models (92 exemplars; Cichy, Panta-
zis, & Oliva, 2014). The figure shows that category struc-
ture for different categories (animacy, human, face)
emerge at different time points in the brain’s emerging
representation of objects. By studying the emergence of
different categories in time, studies have shown that basic-
level category information emerges first (e.g., human
face), and abstract-level category information (e.g., ani-
macy) comes at the later stages of object processing (Carl-
son et al., 2013; Cichy, Pantazis, & Oliva, 2014; Contini,
Wardle, & Carlson, 2017).

Exemplar-based decoding methods and the RSA
framework also provide a unique solution to the chal-
lenge of acquiring data that have the spatial resolution
to study regional brain activity and the temporal resolu-
tion to explore the fine-grained temporal dynamics of
neural activity (Cichy, Pantazis, & Oliva, 2014, 2016).
This novel approach takes advantage of the fine-grained
structure of information in brain representations, as
indexed by MEG and fMRI, and integrates the data to
estimate regional brain activity. The fMRI and MEG
experiments are run using identical stimuli; thus, the
two imaging methods produce RDMs of equal size that
are directly comparable. The MEG RDM describes the
brain representation at each time point, which includes
activity from multiple brain regions. The fMRI RDM
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from an ROI describes that brain area’s representation.
Importantly, different brain areas have unique repre-
sentations, although some areas will be similar, such as
V1 and V2. By correlating a brain area’s fMRI RDM with
the MEG RDM for each time point, we get a time-
varying estimate of that area’s contribution to the MEG
signal across time. This method was used to study the
contribution of early visual cortex (V1) and inferior
temporal cortex (IT) to the MEG signal in time for
object recognition (figure 57.2F; Cichy, Pantazis, &
Oliva, 2014).

Conclusion

M/EEG decoding methods provide a powerful set of
tools for cognitive neuroscientists to gain insight into
perceptual and cognitive functions by revealing the
brain’s processing dynamics with millisecond resolu-
tion. In this chapter we described the fundamental
aspects of M/EEG decoding analysis, practical consid-
erations in running these analyses, and advanced meth-
ods to study representational dynamics. These methods
have been incorporated into a variety of MVPA tool-
boxes (Bode et al., 2018; Fahrenfort et al., 2018; Gram-
fort et al., 2014; Hanke et al., 2009; Meyers, 2013;
Oostenveld et al., 2011; Oosterhof, Connolly, & Haxby,
2016). We expect M/EEG decoding to have a broad
impact on the future of cognitive neuroscience research.
For researchers interested in taking the next step and
learning more about these methods, we refer the reader
to advanced tutorials (Grootswagers, Wardle, & Carl-
son, 2017; Lemm et al., 2011).
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