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When MVPA was first introduced to functional 
magnetic resonance imaging (fMRI), it gave cognitive 
neuroscientists the unprecedented capacity to decode 
information in the brain (for recent reviews, see Haxby, 
2012; Haynes, 2015; Tong & Pratte, 2012). MVPA in com­
bination with fMRI’s excellent spatial resolution enabled 
researchers to target and scrutinize the information 
represented in different brain areas. MVPA methods 
for M/EEG data complement fMRI findings by provid­
ing valuable insight into the time course of neural pro­
cessing. Accordingly, M/EEG decoding methods are 
becoming increasingly popular in the cognitive neurosci­
ence community.

Most cognitive neuroscientists are aware of decoding 
methods, as they have been actively used in fMRI 
research for two decades. Interestingly, methods for 
decoding mental states from the brain predate this 
work by a quarter century. Vidal first developed these 
methods for EEG in the context of brain-computer 
communication, asking the provocative question “Can 
observable electrical brain signals be put to work as car­
riers of information in man-computer communication 
or for the purpose of controlling such external appara­
tus as prosthetic devices or spaceships?” (Vidal, 1973, 
p.  157). Vidal’s and subsequent work focused on the 
practical applications of having access to the brain’s 
internal mental states. Many useful applications for 
decoding methods exist in M/EEG research, including 
brain-computer interfaces (BCI; e.g., Wolpaw et  al., 
2002), lie detection (e.g., Davatzikos et al., 2005), and 
the diagnosis of brain disorders (e.g., Ewers et al., 2011). 
Practical applications such as these place greater weight 
on performance over explanation. If diagnostic accu­
racy for schizophrenia using a particular method is 
increased by 2%, this represents a significant achieve­
ment that can have wide-reaching benefits. In contrast, 
the cognitive neuroscientist is interested in how the 
brain works. Here, the priority is to elucidate the neu­
ral mechanisms underlying cognitive processes, and 
metrics like prediction accuracy are of lesser impor­
tance (Hebart & Baker, 2017). The cognitive neurosci­
ence application of decoding methods for M/EEG is 

abstract  The human brain is constantly processing infor­
mation in order to make decisions and interact with the world 
for tasks ranging from recognizing a familiar face to playing 
a game of tennis. These complex cognitive processes require 
communication between large populations of neurons. The 
noninvasive neuroimaging methods of electroencephalogra­
phy (EEG) and magnetoencephalography (MEG) provide pop­
ulation measures of neural activity with millisecond precision 
that allow us to study the temporal dynamics of cognitive 
processes. However, multisensor M/EEG data is inherently 
high dimensional, making it difficult to parse important sig­
nals from noise. Multivariate pattern analysis (MVPA) or 
decoding methods offer vast potential for understanding 
high-dimensional M/EEG neural data. MVPA can be used to 
distinguish between different conditions and map the time 
courses of various neural processes, from basic sensory pro­
cessing to high-level cognitive processes. In this chapter we 
discuss the practical aspects of performing decoding analyses 
on M/EEG data, as well as the limitations of the method, and 
then review some applications for understanding representa­
tional dynamics in the human brain.

One of the most remarkable aspects of the human brain 
is its speed and processing efficiency. A familiar friend 
is recognized in an instant, speech communication feels 
like a natural dynamic exchange, and we can make split-
second decisions in life-threatening situations. A crucial 
question in cognitive neuroscience is how the brain 
manages such complex tasks with ease. As noninvasive 
brain-imaging techniques with millisecond resolution, 
magnetoencephalography and electroencephalogra­
phy (M/EEG) offer unparalleled potential in captur­
ing the dynamics of human cognition. Multivariate 
pattern analysis (MVPA or decoding) methods, in con­
junction with M/EEG data, give insight into the tempo­
ral dynamics of information processing in the brain. 
Such methods yield insight not only into the time 
course of specific cognitive processes but also into the 
relative order of different cognitive processes. This can 
lead to increased understanding of the temporal 
dynamics of brain representations—for example, how 
low-level visual representations are transformed into 
high-level object representations (Contini, Wardle, & 
Carlson, 2017).
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680    Methods Advances

knowledge M/EEG and thus will focus on the practical 
details of decoding analyses rather than aspects of 
conducting M/EEG experiments. We also note that 
M/EEG-MVPA is a relatively new field of research. On 
the one hand, this means that many exciting new theo­
retical questions can be explored using these powerful 
analysis methods. On the other hand, it means the 
techniques themselves are still evolving, and there is 
currently limited technical guidance (see Grootswa­
gers, Wardle, & Carlson, 2017 for an advanced tutorial). 
At times, we will give recommendations based on our 
own experience that lack a scientific reference. We 
expect many of these recommendations to be followed 
up empirically in the coming years.

In this chapter, we first provide a foundation by situ­
ating pattern analysis methods in the context of M/EEG 
data. We then discuss some of the intricacies of using 
decoding methods for analyzing M/EEG data. We then 
conclude with a section describing advanced methods 
to familiarize the reader with more sophisticated 
approaches to time-resolved decoding.

The Basics of Time-Resolved Decoding  
Analysis for M/EEG

To give intuition to the analysis and a framework for 
discussion, we describe a hypothetical experiment. 
Consider a standard EEG system with 64 sensors 
(figure  57.1A), each of which continuously measures 
local electrical currents on the scalp (figure 57.1B). In 
each trial, participants are shown an image of either an 
X or an O, and there are 40 trials for each condition. To 
simplify the description of the analysis, we start by con­
sidering only two electrodes centered on the occipital 
cortex (e.g., O1 and O2) and data from a single time 
point (e.g., 100 ms poststimulus onset). This narrow 
slice of data can be represented as a two-dimensional 
scatterplot (figure 57.1C). In the plot, the two axes are 
the measurements from the two electrodes in micro­
volts (µV) for the single time point. The 80 data points 
are the measurements recorded for the individual 
trials, denoted by Xs and Os. In this simplified sce­
nario, the EEG data take the form of the familiar dia­
gram given in virtually all texts describing pattern 
classification analysis (e.g., Duda, Hart, & Stork, 2001).

Pattern classification analysis is used to determine if 
there is information in the EEG measurements that 
can predict whether the participant was viewing an X or 
an O on a given trial. The analysis is a two-step process. 
The first step is to train the classifier to find a decision 
boundary that best separates the Xs and Os using the 
EEG data. For the purposes of this initial description, 
we use a linear classifier, which uses a linear decision 

the topic of this chapter. Henceforth, we will use the 
term decoding to reference the use of this method for 
understanding the brain.

This chapter focuses explicitly on time-resolved 
decoding analysis for M/EEG. MVPA can be applied to 
M/EEG data (frequency analysis, wavelet decomposi­
tion, connectivity, and more) in a variety of domains. 
We will limit the scope of our discussion to time-series 
decoding, but many of the same principles apply to 
other domains. This research uses paradigms that 
closely resemble EEG’s event-related potential (ERP) or 
MEG’s event-related field (ERF) research. In these 
experiments, participants are presented with stimuli 
(e.g., images, sounds, and others) from different condi­
tions (e.g., faces vs. houses; attended vs. unattended), 
and the analysis is time locked to the presentation of 
the stimulus. MVPA and ERP/ERF analyses both seek 
to determine any differences between experimental 
conditions. The main difference is that ERP/ERF 
research uses a univariate approach, such as testing for 
differences between conditions from a single recording 
site or from data averaged across multiple sites. MVPA, 
in contrast, utilizes pattern information across record­
ing sites and thus is often a more sensitive measure. As 
the topic of this chapter is MVPA, we will not discuss 
further differences between the approaches except to 
make illustrative points (for more information, see 
Grootswagers, Wardle, & Carlson, 2017; Hebart & Baker, 
2017). For those interested in ERP/ERF analysis or 
more general information about the analysis of EEG 
recordings, we refer the reader to the excellent text on 
ERP research by Luck (2005).

The fundamental goal of the decoding analysis is to 
learn what and how information is represented by the 
brain (see chapters 56 and 58). M/EEG recordings are 
a measure of brain activity with high temporal resolu­
tion, and MVPA is a sensitive measure to determine 
whether or not any information in the recordings can 
distinguish between experimental conditions. The 
combination of the two can tell the researcher if there 
is information in the recordings of brain activity that 
can distinguish experimental conditions for each point 
in time. Going beyond this to address the more critical 
questions of “what” and “how” information is repre­
sented in the brain requires specific knowledge of the 
field of inquiry, which requires the development of 
robust experimental paradigms.

The goal of this chapter is to inform readers with 
little MVPA experience about the mechanics of apply­
ing these methods to M/EEG data and guide research­
ers on using these methods to answer the critical 
questions of “what” and “how” information is repre­
sented in the brain. We assume the reader has a basic 
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Figure 57.1  Time-resolved decoding analysis for M/EEG. A, 
Top-down view of a channel layout for a 64-channel EEG. B, 
Sample recording data from an EEG experiment. C, Scatter­
plot showing hypothetical EEG data from a single time point 
for a decoding experiment. The two axes are the measured 
current from two EEG electrodes. The points are individual 
trials for the X and O conditions. The line denotes the optimal 
decision boundary for classifying Xs and Os derived from the 
generative model. D, Four iterations of cross-validation using 

75% of the data to train the classifier and 25% to test the clas­
sifier. The top row of plots show the training data along with 
the classification boundary computed using linear discrimi­
nant analysis (LDA) for each iteration. The plots below show 
the test data for each iteration with the decision boundary 
computed from the training data. E, An example of a time-
resolved decoding analysis showing classifier accuracy aver­
aged over participants. Data from Grootswagers, Ritchie, 
Wardle, Heathcote, and Carlson (2017).
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682    Methods Advances

observe an effect that is present). Preprocessing pipe­
lines can vary between different laboratories (and even 
across individual researchers in a laboratory), as there is 
no consensus on preprocessing pipelines. The variability 
in preprocessing pipelines has been identified as an 
important issue for reproducibility in neuroimaging 
research (Poldrack et al., 2017). In developing a prepro­
cessing pipeline, one thus needs to balance the desire to 
maximize SNR with minimizing the number of prepro­
cessing steps to ensure the results are robust.

The analysis of ERP/ERF in EEG/MEG, respectively, 
has been around for decades, while decoding methods 
are relatively new. A natural starting point for thinking 
about a preprocessing pipeline for M/EEG decoding 
analysis might be to adopt established methods from 
ERP/ERF research (Luck, 2005). However, MVPA is 
different from ERP/ERF analyses, and thus the prepro­
cessing steps need not be the same. In particular, decod­
ing is more robust to artifacts than these other methods. 
Standard classifiers, such as linear discriminant analy­
sis (LDA) and support vector machines (SVM), implic­
itly model the noise in the data. Therefore, classifiers 
can replace steps that typically require laborious man­
ual inspection, such as bad sensors and artifact rejec­
tion. To understand this, we need to look at how 
machine-learning classifiers like LDA and SVM maxi­
mize the prediction.

First, the classifier assigns weights to each sensor. 
High weights enhance information in the measurement 
that informs the classification, and low weights suppress 
uninformative information in the measurement. This 
aspect is relevant because it potentially makes some 
preprocessing procedures redundant. In the context of 
EEG, an example is a broken or very low impendance 
electrode. In a standard ERP analysis, this electrode 
would be removed or interpolated during preprocessing. 
For MVPA, this step can be omitted because the classi­
fier would learn in training that the noisy electrode is 
not informative for the prediction and would assign it a 
low weight. Note also that channel interpolation is a 
linear combination of surrounding electrodes and thus 
adds no additional information to the classifier. Eyeb­
link and muscular artifacts are other examples. For 
ERP analysis, these artifacts can have a significant effect 
on the quality of the data and thus need to be removed. 
For MVPA, these artifacts are of lesser concern. If the 
artifact is not informative for the prediction, the classi­
fier will suppress the artifacts by giving low weight to the 
component of the signal related to the artifacts. Remov­
ing trials with eyeblink artifacts is thus another prepro­
cessing step that potentially could be removed from the 
MVPA preprocessing pipeline (Grootswagers, Wardle, 
& Carlson, 2017). Note that artifacts confounded with 

boundary for classification. In the plot in figure 57.1C, 
the observations to the left of the boundary are classi­
fied as Os, and those to the right of the boundary are 
classified as Xs.

The second step is testing the classifier, in which a 
trained classifier is used to predict whether the partici­
pant was viewing an X or an O in a new set of trials. It is 
essential to use independent data for the two steps 
(training and test) to show that the classifier can gener­
alize to independent data outside the training sample. 
For this, we use cross-validation, which involves split­
ting the data into training and test sets. In this exam­
ple, we divide the data into four blocks and use 75% of 
the data to train the classifier and the other 25% to test 
the classifier. The classifier is trained four times, each 
time using three blocks of data to train the classifier 
and the remaining block to test the classifier (fig­
ure  57.1D). The average prediction accuracy (perfor­
mance) of the classifier across the four iterations is 
taken as an estimate of decoding performance for clas­
sifying Xs and Os from the EEG data at this time point. 
Importantly, if the classifier accuracy is above chance 
(i.e., 50%), this is taken as evidence there were different 
patterns of activation across the two channels when the 
participant viewed an X or an O.

To bring this simplified scenario back to a full 
M/ EEG  data set is only a matter of scaling up. First, 
instead of limiting the analysis to two channels, all of 
the channels or a selected subset of the channels is used 
for the analysis. Second, the analysis is repeated for 
every time point instead of only on a single time point. 
The result is a time-varying measure of stimulus/condi­
tion decodability (figure 57.1E). Finally, the experiment 
is repeated in multiple subjects to enable statistical 
inference, treating the subject as a random effect (see 
the section on statistical assessment).

The above provides a broad overview of the critical 
features of decoding analysis for M/EEG. In the follow­
ing sections, we go into more detail about the steps in 
the analysis and discuss specific issues for the analysis 
of M/EEG data.

Practical Aspects of M/EEG Decoding Analysis

On preprocessing M/EEG data for multivariate pattern 
analysis  M/EEG data is inherently noisy, picking up 
electrical activity from a variety of nonbrain sources, 
such as muscle activity, eye movements, and environ­
mental noise. M/EEG research uses many preprocessing 
procedures to reduce this noise, such as filtering, resam­
pling, and artifact rejection. The goal of preprocessing is 
to increase the signal-to-noise ratio (SNR), reducing the 
probability of obtaining a false negative (i.e., failing to 
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available for M/EEG decoding research and step into the 
fMRI community’s argument for linear classifiers, dis­
cussing them in the context of M/EEG.

Although nonlinear classifiers have the added capac­
ity to fit more complex class boundaries using nonlin­
ear terms, in practice they generally perform equal to 
or worse than their linear counterparts in neuroimag­
ing decoding studies (Misaki et  al., 2010). This is 
because the increased flexibility of nonlinear classifi­
ers comes at the cost of overfitting, which limits gener­
alization performance. Furthermore, the results from 
nonlinear classifiers are harder to interpret. As previ­
ously noted, it is also essential to keep in mind that 
cognitive neuroscience applications of MVPA focus on 
understanding the brain, where improvements in per­
formance are of marginal value (see the introduction 
to this chapter). A small increase in performance is a 
hefty price for the loss of interpretability, which we dis­
cuss below. Thus, unless there is substantial justifica­
tion, linear classifiers are the preferred method for 
cognitive neuroscience applications of MVPA for the 
analysis of M/EEG data.

Linear classifiers have two interpretive advantages 
from a cognitive neuroscience perspective. First, linear 
classifiers are a biologically plausible form of a “read­
out” (DiCarlo & Cox, 2007). Specifically, the informa­
tion used by a linear classifier could also be “read out” 
by a single downstream neuron (Kriegeskorte, 2011; 
Misaki et al., 2010). In the context of M/EEG, this is less 
compelling. Embedded in this reasoning is the fact that 
the downstream neuron has access to the same infor­
mation as the classifier (Carlson et al., 2017). A single 
EEG channel records the aggregated activity of thou­
sands of neurons from different brain regions, and the 
entire EEG cap has access to most of the neurons on 
the cortical surface. It is not biologically plausible that 
a single neuron has access to all the information repre­
sented on the cortical surface.

The second interpretive advantage is that linear clas­
sifiers produce weight maps that can be visualized to 
gain insight into the source of decodable information 
(Kamitani & Tong, 2005). An fMRI-MVPA experiment 
studying faces, for example, might show that voxels in 
the fusiform face area (FFA; Kanwisher, McDermott, & 
Chun, 1997) are given high weights. The weight maps 
thus can be used to infer that the FFA is a strong candi­
date source of decodable information. Similarly, for 
M/EEG, the classifier weights can be projected back to 
the topographical map of the sensors to gain insight 
into the source of decodable information (but see 
Haufe et al. [2014] and the discussion below).

The final point of discussion is the choice of classi­
fier. In a recent study, we compared the performance of 

the conditions of interest are a serious concern for all 
(MVPA and ERP) analyses!

Second, classifiers can cancel noise in the data to 
improve the prediction. This is relevant when consider­
ing the effect of environmental noise. For ERP analysis, 
a noisy channel increases variance in the estimate of 
the average evoked response, and thus it is advisable to 
interpolate noisy channels or exclude them from the 
analysis. In contrast, classifiers (e.g., LDA) can use the 
information about the noise to improve prediction. For 
example, suppose we have two hypothetical channels. 
One channel contains brain activity differentiating the 
two experimental conditions and also environmental 
noise. The second channel is far from the source of 
brain activity and only contains the environmental 
noise. The classifier can use an estimate of the environ­
mental noise from the second channel and subtract it 
from the first channel so that what remains is the signal 
that differentiates the two experimental conditions. 
Including the noisy channel can therefore give the clas­
sifier more information about the signal of interest than 
if the channel had been removed (Averbeck, Latham, 
& Pouget, 2006; Haufe et al., 2014).

In summary, MVPA is a relatively new approach to 
analyzing M/EEG data that does not have stringent 
noise-reduction requirements, as do typical ERP analy­
ses. The critical lesson to be taken concerning prepro­
cessing is that MVPA can inherently deal with some 
noise and artifacts in the data. This is an advantage of 
the decoding approach because it reduces data-
processing steps relying on subjective criteria (e.g., the 
interpolation of noisy channels identified by visual 
inspection). While systematic research is still required, 
M/EEG MVPA research will need to develop its own 
guidelines for preprocessing. These new standards will 
need to take into account how classifiers operate to 
strike a balance between optimizing SNR and minimiz­
ing the number of preprocessing steps and options for 
reproducible research (Poldrack et al., 2017; for early 
explorations into the effect of preprocessing pipelines 
on M/EEG decoding, see Grootswagers et al., 2017).

Classifier selection  Decoding analysis generally favors 
linear classifiers. As the name implies, linear classifiers use 
a linear boundary (e.g., see figure 57.1) or a hyperplane 
for greater than two dimensions for classification. Com­
pelling arguments have been made for the use of linear 
classifiers in fMRI research (Kriegeskorte, 2011; Misaki 
et al., 2010; Muller, Anderson, & Birch, 2003; Mur, Ban­
dettini, & Kriegeskorte, 2009; Pereira, Mitchell, & Botv­
inick, 2009; Schwarzkopf & Rees, 2011). In contrast, there 
has been little systematic discussion of this for M/EEG. 
Below, we give an overview of the different classifiers 
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684    Methods Advances

processing. This can also be applied in a sensor-
searchlight approach (similar to fMRI; see Haynes 
et al., 2007; Kriegeskorte, Goebel, & Bandettini, 2006), 
in which the analysis is repeated on local clusters of 
sensors, providing a scalp map of decoding accuracies 
(e.g., see Collins, Robinson, & Behrmann, 2018; Kaiser, 
Oosterhof, & Peelen, 2016).

These two methods are subject to interpretive criti­
cism arising from the fact that brain activity will propa­
gate outside the M/EEG sensors located above a source 
(information loss), and brain activity from nearby areas 
will propagate into the selected sensors (information 
leakage). Nevertheless, it can be a useful means for 
gross localization (e.g., left vs. right hemisphere) in 
some circumstances, and the limitations in its inter­
pretability are transparent. Alternatively, the sensor-
level data can first be projected into source space using 
source reconstruction methods such as minimum norm 
estimate (MNE; Hamalainen & Ilmoniemi, 1994) and 
beamforming (Hamalainen & Ilmoniemi, 1994; Van 
Veen et al., 1997). Multivariate time-series data can be 
reconstructed using these methods using virtual voxels 
in an ROI, and decoding analyses can be performed for 
different ROIs. As with univariate analysis, the quality 
of the source reconstruction can be improved using 
anatomical MRI data from the participant and fMRI 
data to precisely define the ROI. Notably, these more 
sophisticated methods for localization are also subject 
to issues of information loss and leakage (Brookes, 
Woolrich, & Barnes, 2012; Gohel et  al., 2018; Hipp 
et al., 2012; Nolte et al., 2004; Sato et al., 2018), but the 
algorithms will attempt to minimize their effect.

In summary, MVPA is a sensitive measure for differenti­
ating conditions based on the evoked spatial distribution 
of activity from M/EEG. The MVPA approach, however, 
remains limited for localizing sources, which stems from 
the fundamental inverse problem for M/EEG.

Statistical assessment of information at the group level  Time-
resolved MVPA tests the presence of information at the 
group level. That is, we want to know whether across 
our sample of subjects, classifier performance is higher 
than would be expected by chance. There are multiple 
proposed methods to assess this, and there is no con­
sensus about the optimal approach. Group-level classi­
fier accuracies can, for example, be tested against 
chance using a t-test, or nonparametric tests such as a 
sign-rank test (Wilcoxon, 1945) or permutation test 
(Oostenveld et al., 2011). Because these tests are repeated 
at each time point, they must also be corrected for mul­
tiple comparisons—for example, using Bonferroni, 
false discovery rate (FDR; Nichols & Holmes, 2002), or 
cluster-based corrections (e.g., Oostenveld et al., 2011; 

five classifiers when decoding minimally preprocessed 
MEG data: LDA, Gaussian naive Bayes (GNB), linear 
SVMs, Spearman’s rank correlation, and Pearson’s cor­
relation (Grootswagers, Wardle, & Carlson, 2017). The 
study found that SVM, LDA, and GNB performed the 
best, suggesting that they are all excellent choices for 
M/EEG decoding studies.

Localizing the source of decodable information in M/EEG ​
Cognitive neuroscientists are often interested in both 
spatial (i.e., where) and temporal (i.e., when) signa­
tures of neural processing. Recovering the underlying 
source(s) of neural activity is a long-standing challenge 
for M/EEG research. This challenge extends to M/EEG 
decoding research, although advanced decoding meth­
ods do offer at least one possible solution (see the sec­
tion on representational dynamics). In this discussion 
it is essential to make a distinction between resolution 
and spatial precision. Resolution is the capacity to 
resolve two points in space. Using MVPA, MEG studies 
have shown that it may be possible to resolve activation 
patterns spanning V1 columns that are just a millime­
ter in width (Cichy, Ramirez, & Pantazis, 2015; Wardle 
et  al., 2016). These results highlight the remarkable 
sensitivity of MVPA for detecting subtle differences in 
patterns of activation. However, localizing the precise 
source of this neural information (i.e., spatial preci­
sion) remains an ongoing challenge.

Broadly, three methods can be used to localize 
sources in the brain using MVPA. Below, we will discuss 
two of these methods; the third will be presented later 
in the chapter. The first approach is weight projection. 
MVPA returns both a performance metric (e.g., percent 
correct) and the weights used by the classifier to make 
the prediction. The more informative the sensor, the 
higher the weight. One straightforward means of iden­
tifying the source of decodable information is to plot 
the weights on the scalp map. When interpreting these 
maps, it is important to consider the definition of infor­
mative (c.f., de-Wit et al., 2016; Haufe et al., 2014). Previ­
ously, we discussed the three ways classifiers optimize 
their performance. In addition to weights being assigned 
to distinguish condition-specific information, weights 
are also used by the classifier to suppress noise. When 
using the weight projection method to interpret the 
underlying sources, it is thus essential to consider only 
weights that reflect the differences between conditions 
(Grootswagers, Wardle, & Carlson, 2017; Haufe et al., 
2014). The second approach is to extract multivariate 
brain activity from a region of interest (ROI) for MVPA. 
The most straightforward variant of this is to select sen­
sors located above the ROI—for example, using ten 
sensors over the occipital cortex to study early visual 
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the two exemplars. Hypotheses are tested by construct­
ing model RDMs that make predictions about the struc­
ture of the brain representation. An animacy model, 
for example, predicts that animate and inanimate 
objects form separable clusters in the representation. 
Formally, the animacy model predicts that objects 
within the animate and inanimate object categories 
will be close to one another (distance = 0), and objects 
that span the category boundary will be far apart (dis­
tance = 1; see figure  57.2C). To test the model, the 
entries of the observed neural RDM are correlated with 
the model RDM. For the animacy model, a high corre­
lation between the neural RDM and the model allows 
us to conclude that animacy is represented in the brain.

The exemplar-based decoding approach taken in RSA 
makes the structure of the representation and the models 
more explicit, which has many advantages (Kriegeskorte 
& Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 2008; 
Nili et al., 2014). The exemplar-based analysis can be used 
to study the time-varying structure of brain representa­
tions using M/EEG. As before, the analysis and model 
testing are performed on all of the time points. By exam­
ining how brain representations emerge over time, we 
gain a deeper understanding of how information is 
dynamically transformed and represented in the brain. 
Figure 57.2D shows the time-varying analysis from a MEG 
data set with a more extensive stimulus set using several 
different category models (92 exemplars; Cichy, Panta­
zis, & Oliva, 2014). The figure shows that category struc­
ture for different categories (animacy, human, face) 
emerge at different time points in the brain’s emerging 
representation of objects. By studying the emergence of 
different categories in time, studies have shown that basic-
level category information emerges first (e.g., human 
face), and abstract-level category information (e.g., ani­
macy) comes at the later stages of object processing (Carl­
son et al., 2013; Cichy, Pantazis, & Oliva, 2014; Contini, 
Wardle, & Carlson, 2017).

Exemplar-based decoding methods and the RSA 
framework also provide a unique solution to the chal­
lenge of acquiring data that have the spatial resolution 
to study regional brain activity and the temporal resolu­
tion to explore the fine-grained temporal dynamics of 
neural activity (Cichy, Pantazis, & Oliva, 2014, 2016). 
This novel approach takes advantage of the fine-grained 
structure of information in brain representations, as 
indexed by MEG and fMRI, and integrates the data to 
estimate regional brain activity. The fMRI and MEG 
experiments are run using identical stimuli; thus, the 
two imaging methods produce RDMs of equal size that 
are directly comparable. The MEG RDM describes the 
brain representation at each time point, which includes 
activity from multiple brain regions. The fMRI RDM 

Smith & Nichols, 2009; Stelzer, Chen, & Turner, 2013). 
As with the choice of test statistic, there is no consensus 
on the optimal method for correcting multiple com­
parisons. Thus, the choice of statistical analysis must be 
guided by the experimental questions (see Allefeld, 
Gorgen, & Haynes, 2016; Hebart & Baker, 2017; Thirion 
et al., 2015).

Advanced Methods for M/EEG Decoding: Represen­
tational Dynamics

Exemplar-based decoding methods expand on categor­
ical approaches by studying the structure of how infor­
mation is represented. Figure  57.2A, B, shows the 
difference between the two approaches. The two parts 
of the figure show a reconstruction of the brain’s repre­
sentation of 24 objects from MEG data 140 ms after the 
onset of the stimulus (data from Carlson et al., 2013). 
The stimulus set included 12 animate objects (e.g., 
camel and alligator) and 12 inanimate objects (e.g., 
chair and kiwi fruit). In the category decoding approach 
(figure  57.2A), the stimuli are treated as equivalent 
class members (labeled A = animate or IA = inanimate), 
and the analysis is conducted using standard methods 
(see the section on the basics of time-resolved decod­
ing). If the analysis shows the classifier can decode 
animate and inanimate objects from the MEG data, 
this is evidence that the brain representation of the 
stimuli is encoding object animacy.

Exemplar-based decoding methods study how the indi­
vidual exemplars of each category are represented. Here, 
the decoding analysis is run for all possible pairwise com­
binations of exemplars—including within-category. The 
decodability (i.e., classification performance) of each pair 
is taken as a measure of “distance” between the two items 
in the neural representation (Walther et  al., 2016). Fig­
ure  57.2B demonstrates this approach to plotting the 
individual stimuli. A line connecting the object exem­
plars in the figure indicates the decodability of the con­
nected pair. The length of the line is proportional to 
decodability—that is, stimuli that are close to one another 
(a human and a monkey face) are less decodable than 
stimuli that are far apart (e.g., a monkey and a television) 
at the given point in time during visual processing.

Representational similarity analysis (RSA; Krieges­
korte & Kievit, 2013; Kriegeskorte, Mur, & Bandettini, 
2008) is the standard framework for hypothesis testing 
for the exemplar-based decoding approach. In the 
RSA, the pairwise decodability of the stimuli from the 
brain recordings is encoded in a representational dis­
similarity matrix (RDM; figure  57.2C). The rows and 
columns of the matrix correspond to individual exem­
plars, and each cell is the neural decodability between 
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Conclusion

M/EEG decoding methods provide a powerful set of 
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tion. In this chapter we described the fundamental 
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Figure 57.2  Advanced methods for M/EEG decoding. A, B, 
Plots demonstrate the difference between category and 
exemplar-based decoding methods. Data for the plots come 
from a single time point (140 ms poststimulus onset) of an 
MEG experiment studying the brain’s representation of objects 
(Carlson et al., 2013). A, Category-decoding approach with stim­
uli labeled by their category (A = animate object; IA = inani­
mate object) and the decision boundary from a linear classifier 
trained to discriminate animate and inanimate objects from 
the MEG data. B, Exemplar-decoding approach with individ­
ual stimuli displayed as images. The lines in the plot represent 
the pairwise decodability of individual exemplars for all possi­
ble pairwise comparisons. The distance (line length) indicates 
the relative decodability of exemplar pairs. C, Representational 
similarity (RSA) model testing applied to the MEG data. The 

entries of the neural RDM are correlated with the animacy 
model to study whether the brain represents object animacy at 
140 ms poststimulus onset. D, RSA used to test multiple candi­
date models from another MEG experiment investigating the 
brain’s representation of objects. Data from Cichy, Pantazis, 
and Oliva (2014). Plotted is the time correlation between the 
time-varying RDMs from the MEG and animacy, human, and 
face models. E, Graphical depiction of the MEG-fMRI fusion 
approach estimating regional time-varying neural activity 
from fMRI regions of interest (ROI). The time-varying MEG 
RDMs are correlated with RDMs from ROIs (obtained using 
fMRI). For each ROI, this gives a time-varying correlation 
indexing neural activity in the ROI. Shown is the estimated 
neural activity for V1 and inferior temporal cortex. Data from 
Cichy, Pantazis, and Oliva (2014). (See color plate 63.)
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