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C O G N I T I V E  N E U R O S C I E N C E

Dynamics of visual object coding within and across the 
hemispheres: Objects in the periphery
Amanda K. Robinson1,2,3*, Tijl Grootswagers4,5, Sophia M. Shatek3,6,  
Marlene Behrmann7,8, Thomas A. Carlson3

The human brain continuously integrates information across its two hemispheres to construct a coherent repre-
sentation of the perceptual world. Characterizing how visual information is represented in each hemisphere over 
time is crucial for understanding how hemispheric transfer contributes to perception. Here, we investigated infor-
mation processing within each hemisphere over time and the degree to which it is distinct or duplicated across 
hemispheres. We presented participants with object images lateralized to the left or right visual fields while mea-
suring their brain activity with electroencephalography. Stimulus coding was more robust and emerged earlier in 
the contralateral than the ipsilateral hemisphere. Presentation of two stimuli, one to each hemifield, reduced the 
fidelity of representations in both hemispheres relative to one stimulus alone, signifying hemispheric interfer-
ence. Last, we found that processing within the contralateral, but not ipsilateral, hemisphere was biased to image-
related over concept-related information. Together, these results suggest that hemispheric transfer operates to 
filter irrelevant information and efficiently prioritize processing of meaning.

INTRODUCTION
The human brain has two distinct but connected hemispheres that 
must communicate and coordinate to yield unitary visual percep-
tion. Because of the contralateral arrangement of the visual system, 
stimuli presented to one hemifield are initially processed in the op-
posite hemisphere. Yet, from this hemisphere-distinct processing, a 
single coherent percept of the visual world emerges, highlighting the 
importance of hemispheric integration. The nature of hemispheric 
processing has fascinated cognitive neuroscientists for decades. For 
example, studies using split-brain patients, who had the corpus cal-
losum surgically severed, have shown that the left and right hemi-
spheres can have different perceptual experiences and responses to 
the same stimulus (1, 2). The mechanisms underlying hemispheric 
transfer are complex, involving communication between brain re-
gions at different levels of processing, but understanding how neural 
processing results in perception requires a better understanding of 
information processing within and across hemispheres.

The left and right hemispheres of the brain are largely homolo-
gous in terms of structure and function. The strength in this dupli-
cation, or redundancy, can be borne out in behavior; for example, 
interhemispheric cooperation can improve performance on highly 
complex tasks (3, 4). Neurally, interhemispheric communication is 
facilitated by a number of anatomical connections between the left 
and right hemispheres, including the corpus callosum, posterior 
commissure, and anterior commissure (5–7). These connections 
allow the two hemispheres to share information and coordinate 
their activities. For visual perception, the integration of information 

across the hemispheres is crucial yet is not as well characterized as 
other aspects of visual processing. The hierarchical nature of visual 
processing has been well-studied; across the swath of visual cortex, 
there is a hierarchical flow of features, starting with sensitivity to 
low-level features such as straight edges coded in primary visual 
cortex, through successive stages to higher-level categorical features 
associated with specific patterns (e.g., words or faces) coded in ven-
tral temporal cortex (8, 9). Models of the visual system, however, 
typically do not consider the interplay between the two hemispheres, 
despite their joint involvement in perception. Here, we map the dy-
namics of information coding within each hemisphere and the shar-
ing of this information across hemispheres.

Neural recordings have shed light on the computations that un-
derlie hemispheric processing. Studies using electroencephalogra-
phy (EEG) in humans have shown earlier and stronger evoked 
responses over the scalp contralateral to stimulus presentation rela-
tive to the ipsilateral side, consistent with the trajectory of fibers 
from the eyes to the contralateral hemisphere (10–12). Interhemi-
spheric transfer time calculated from event-related potentials in oc-
cipital brain regions have been observed between 13 and 26 ms 
(10, 12, 13), varying by stimulus location and intensity (14, 15). Oth-
er work has used functional magnetic resonance imaging to charac-
terize retinotopic biases within the brain, specifically showing the 
dominance of contralateral responses for visual processing through-
out occipital cortex (16) and parietal cortex (17, 18), as well as other 
regions of the brain such as the hippocampus (19). Regions of visual 
cortex typically considered category-selective exhibit contralateral 
biases and distinct responses across the hemispheres (20, 21). This 
vast coding of visuospatial maps with contralateral biases within the 
brain has implications for cognitive functioning (22). The inferred 
but untested implication is that the contralateral hemisphere initially 
registers the sensory information and then propagates a subset of 
this information to the ipsilateral hemisphere. Yet, strength of neural 
activation is not necessarily correlated with strength of information 
coding (23). A pertinent question, then, and the focus of this paper 
is how the representations derived in the contralateral and ipsilateral 
hemispheres differ.
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Studying hemispheric information has proven difficult in hu-
mans due to traditional analytic methods of neural data that obscure 
subtle neural patterns of activity. With the advent of multivariate 
pattern analyses (MVPA), or neural “decoding,” however, we can 
study what is represented in the brain using noninvasive neural re-
cordings in humans (24). Combined with high temporal resolution 
neuroimaging methods such as EEG, MVPA can elucidate the time 
course and fidelity of stimulus information within neural patterns of 
activity. Time-resolved neural decoding methods have shown that 
visual information is represented quickly in the brain, occurring in 
less than 100 ms from stimulus onset (25, 26). Notwithstanding this 
rapid time course, EEG has sufficient resolution to detect high spa-
tial frequency neural activity early in the course of signal propaga-
tion (27), making it possible to separate signals from the left and 
right hemispheres and permitting opportunities to study dynamics 
of information within each hemisphere.

Here, we use EEG and multivariate analyses to investigate the rep-
resentation of visual information within each hemisphere and the 
similarities across hemispheres over time. We used a rapid serial vi-
sual presentation paradigm with visual stimuli presented to the left 
and right hemifields, while neural activity was measured using EEG 
(Fig. 1). The goals of this study were threefold. First, we assessed how 
the contralateral and ipsilateral hemispheres process visual signals 
from the periphery (projected just to one hemisphere initially) over 
time. Second, we presented stimuli to the left and right hemifields si-
multaneously to understand how processing changes when different 
signals project to the two hemispheres, with the expectation that there 
might be interference in the representations. Last, to understand the 

content of hemispheric information, we assessed how the neural rep-
resentations per hemisphere compare to similarity judgments on in-
dependent perceptual and conceptual tasks. We found clear 
contralateral dominance in the strength of visual coding, as expected. 
Further, we found reduction in information when two different stim-
uli were shown, one to each hemifield, suggesting that there may be 
interference or competition for representation between contralateral 
and (propagated) ipsilateral information. With respect to behavior, 
we found that the contralateral hemisphere contains more informa-
tion relevant to perceptual than conceptual judgments but that this 
perceptual bias is largely missing in the ipsilateral hemisphere. This 
finding provocatively indicates that interhemispheric transfer might 
efficiently prioritize meaning rather than image statistics. These re-
sults yield great insights into hemispheric processing, the complex 
interplay between the two hemispheres, and how they cooperate to 
create a unified representation of the visual world.

RESULTS
Neural dynamics of stimulus representations: Single 
peripheral condition
To investigate hemispheric dynamics when processing was biased to one 
hemisphere, we assessed the neural representations of stimuli shown pe-
ripherally to the contralateral and ipsilateral visual fields (Fig. 1B, top). 
MVPA, or neural decoding, was applied to the time-resolved EEG data to 
discriminate how different stimuli evoked different patterns of neural ac-
tivity over the scalp (24, 28). For each presentation condition (single pe-
ripheral and dual peripheral), stimulus hemifield (left/right), hemisphere 

Fig. 1. Experimental design. (A) Stimuli were 36 images of objects and matching word labels for six different object categories. (B) Example sequence timeline for single 
peripheral and dual peripheral conditions. (C) Electrode clusters for left hemisphere and right hemisphere analyses.
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(left/right), time point, and participant, we assessed stimulus-specific 
representations by training a classifier to discriminate between neural 
activity associated with two experimental stimuli and testing on held out 
data for the same stimuli. This procedure was repeated for all pairs of the 
36 experimental stimuli (630 stimulus pairs), and the mean pairwise de-
coding accuracy was assessed for the participant group per condition. 
Above-chance decoding accuracy (above 50%) was considered evidence 
of stimulus information in the neural signals.

Decoding was performed separately using clusters of electrodes 
measuring from the left and right hemispheres over time (Fig. 1C). 
Stimulus information coded within each hemisphere, as indexed by 
mean pairwise decoding accuracy, showed clear contralateral domi-
nance (Fig. 2, A and B). In the left hemisphere, right visual field (RVF) 

stimuli showed higher decoding and earlier onset (peak = 53.39%, on-
set = 79 ms) than left visual field (LVF) stimuli (peak = 51.68%, on-
set = 96 ms). Similarly, in the right hemisphere, the contralateral (LVF) 
stimuli showed higher decoding and earlier onsets (peak = 54.98%, 
onset = 78 ms) than RVF stimuli (peak = 52.53%, onset = 91 ms). 
Furthermore, comparison of peak times for each hemifield revealed 
earlier peak decoding for the contralateral hemisphere than the ipsilat-
eral hemisphere (see Table 1). Representations in the right hemisphere 
were stronger than those in the left hemisphere for both contralateral 
and ipsilateral stimuli (Fig. 2C), consistent with previous reports (29). 
Notably, this right-hemispheric dominance was not driven by the faces 
in the stimulus set; the 18 nonface objects also produced stronger right 
hemisphere representations when analyzed separately (see the 

Fig. 2. Peripheral stimulus representations in the left and right hemispheres (single peripheral condition). Neural representations for stimuli in the single periph-
eral condition across time (1-ms resolution), as indexed by mean decoding accuracy of pairs of experimental stimuli. Accuracy of decoding is plotted separately for stim-
uli appearing in the contralateral and ipsilateral visual fields. (A) Decoding using cluster of electrodes over the left hemisphere. (B) Decoding using cluster of electrodes 
over the right hemisphere. (C) Difference between right and left hemisphere decoding accuracy. Shaded lines indicate SEM. Contralateral representations were stronger, 
with earlier peaks and onsets than ipsilateral representations. Right hemisphere representations were stronger than the left for contralateral stimulus presentations. Bot-
tom plots show Bayes factors (BFs) which indicate the evidence for above-chance decoding per condition or nonzero differences between conditions.

Table 1. Onset time (with 95% confidence intervals in brackets), time of peak decoding, and peak decoding accuracy for single and dual peripheral 
conditions. Onsets and peaks according to condition (single/dual peripheral), hemisphere, and side of stimulus presentation (LVF/RVF). Contralateral 
combinations are in bold. Onsets were calculated as the time of the first time Bayes factors were above 10 for 10 ms consecutively. Confidence intervals were 
calculated using jackknifing to subsample participants (leave-two-participants-out; 190 unique permutations) to yield a distribution of onset and peak times.

Onset time Time of peak decoding Peak decoding accuracy

LH RH LH RH LH RH

 Single peripheral LVF  96 [91–104] ﻿78 [77–79]﻿  244 [244–262] ﻿214 [129–243]﻿  51.68% ﻿54.98%﻿

 RVF ﻿79 [77–81]  91 [90–104] ﻿152 [152–201]﻿  241 [241–241] ﻿53.39%﻿  52.53%

Dual peripheral LVF  99 [97–105] ﻿78 [76–82]﻿  254 [111–254] ﻿115 [114–215]﻿  50.93% ﻿54.49%﻿

 RVF ﻿69 [68–78]  85 [79–87] ﻿202 [202–204]﻿  245 [244–257] ﻿53.13%﻿  51.27%
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Supplementary Materials). Overall, decoding of single stimuli present-
ed to a hemifield provided support for differing dynamics in each 
hemisphere and a contralateral precedence in the visual system. Next, 
we turned to how the dynamics of representation varied when there 
were competing visual inputs from the two hemifields.

Neural dynamics of stimulus representations: Dual 
peripheral condition
We were interested in how representational dynamics varied accord-
ing to the contralateral and ipsilateral sides when two stimuli were 
presented simultaneously: one to the LVF and one to the RVF (Fig. 3). 
Given the ubiquitous nature of hemispheric transfer, we expected that 
the fidelity of stimulus information might be reduced when there are 
competing inputs to the two hemispheres. For this dual peripheral 
condition, decoding was performed for each stimulus separately but, 
now, in the context of a second stimulus in the other field. Again, as 
above, there was clear contralateral dominance in both the left and 
right hemispheres (Fig. 3, A and B). In the left hemisphere, the RVF 
stimuli showed higher decoding and earlier onset (peak = 53.13%, 
onset = 69 ms) than LVF stimuli (peak = 50.93%, onset = 99 ms). 
Echoing these results, in the right hemisphere, the contralateral (LVF) 
stimuli showed higher decoding and earlier onsets (peak = 54.49%, 
onset = 78 ms) than RVF stimuli (peak = 51.27%, onset = 85 ms). 
Right hemisphere superiority was reliable for contralateral but not ip-
silateral representations (Fig. 3C). Together, these results show that 
even when there is competing information from the two hemifields, 
information about each stimulus is processed by both hemispheres of 

the brain at the same time. Whether these dynamics were similar be-
tween the single and dual peripheral conditions was tested next.

Comparison of single and dual peripheral presentation
To assess whether the addition of a second stimulus in the dual pe-
ripheral condition interfered with the fidelity of stimulus representa-
tions, we compared the timing and strength of decoding in the single 
and dual peripheral conditions. Inspection of decoding onset time 
revealed earlier onsets for contralateral than ipsilateral stimuli, with 
contralateral decoding beginning before 80 ms and ipsilateral decod-
ing tending to begin after 90 ms, regardless of which hemisphere or 
condition was being assessed (Table 1). Thus, the initial stage of stim-
ulus processing was not influenced by clutter in the display.

However, there was a decrease in stimulus-related information in 
the brain in the dual peripheral relative to the single peripheral condi-
tion (Fig. 4). To compare the representations encoded by the brain be-
tween conditions, we assessed decoding accuracy in each condition for 
contralateral and ipsilateral stimuli, collapsed across the left and right 
hemispheres. For both contralateral and ipsilateral combinations, stim-
ulus representations were more robust for the single peripheral than the 
dual peripheral condition, indicating that a stimulus presented in the 
other visual field decreased the fidelity of stimulus representations.

Representational similarity analyses: Comparison 
across hemispheres
We were next interested in the structure of representations in the two 
hemispheres of the brain. The hypothesis was that stimulus coding in 

Fig. 3. Peripheral stimulus representations in the left and right hemispheres (dual peripheral condition). Neural representations when two stimuli are presented to 
different hemispheres, as indexed by mean pairwise decoding accuracy. Accuracy is plotted separately for stimuli appearing in the contralateral and ipsilateral visual 
fields. (A) Decoding using cluster of electrodes over the left hemisphere. (B) Decoding using cluster of electrodes over the right hemisphere. (C) Difference between right 
and left hemisphere decoding. Shaded lines represent SEM. Representations for the contralateral stimuli were stronger, with earlier peaks and onsets than for ipsilateral 
stimuli. Right hemisphere representations were stronger than the left for contralateral stimuli. Bottom plots show BFs which indicate the evidence for above-chance de-
coding per condition or nonzero differences between conditions.
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the ipsilateral hemisphere should reflect the same representations as 
the contralateral hemisphere but following a delay approximating in-
terhemispheric transfer time. To investigate the relationship between 
representations in the two hemispheres, we used representational 
similarity analyses (RSA) (30), which abstracts away from specific 
activity patterns (e.g., from EEG electrodes over the left hemisphere) 
to the relationships between different stimulus representations.

For each presentation condition (single peripheral and dual pe-
ripheral), stimulus visual field (LVF/RVF), time point, and participant, 
we constructed neural representational dissimilarity matrices (RDMs) 
to quantify the dissimilarity in the representations of all 36 stimuli (i.e., 
in a 36 × 36 matrix with 630 unique values). The RDMs from the left 
and right hemispheres were then correlated for all possible time points 
(Fig. 5A). These analyses were performed in a split-half manner, where 
correlations were always calculated across separate experimental se-
quences. Correlations between contralateral and ipsilateral hemi-
spheres were assessed by collapsing across relevant visual field and 
left/right hemispheres. We found evidence for shared representations 

across the contralateral and ipsilateral hemispheres, particularly be-
tween 100 and 300 ms after stimulus onset (Fig. 5B). These correla-
tions were more reliable for the single peripheral condition than the 
dual peripheral condition. This suggests that information that is trans-
ferred from the contralateral to ipsilateral hemisphere maintains a 
stimulus-specific structure but that transfer is reduced in the case of 
competing information (as in the dual peripheral condition).

To assess the timing of information sharing, we assessed the num-
ber of time points with reliable correlations [Bayes factor (BF) > 3] 
as a function of time for the contralateral and ipsilateral hemispheres. 
As expected, times were earlier for the contralateral than ipsilateral 
hemisphere (Fig. 5C). The time delay in hemispheric processing 
was assessed by calculating mean correlation values for a range of 
ipsilateral-contralateral delays per participant (−100 to 100 ms). These 
are the mean values for off-center diagonals between 0 and 500 ms 
of the time generalization RSA in Fig. 5B; negative time delays 
reflect diagonals shifted upward (ipsilateral earlier than contra-
lateral), and positive delays reflect diagonals shifted downward 

Fig. 4. Decoding accuracy for peripheral stimuli when presented alone (single) or with another stimulus (dual). Decoding accuracy is plotted according to whether 
stimuli were contralateral or ipsilateral relative to the electrode cluster. These results are collapsed across the left and right hemispheres. Information was stronger in the 
single peripheral condition than the dual peripheral condition (see BFs for difference), for both contralateral and ipsilateral stimuli. Shaded lines represent SEM. Bottom 
plots show BFs indicating the evidence for nonzero differences between single and dual conditions.
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Fig. 5. Shared structure of representations across the hemispheres. (A) Interhemispheric representational similarity approach for assessing shared information across 
the hemispheres. The 36 × 36 stimulus neural RDMs (an indexed by decoding accuracy) were correlated between the two hemispheres for every pair of time points using 
split-half cross-validation. This resulted in time × time hemispheric correlation matrices. If there was no delay between the hemispheres, then the time generalization plots 
would be symmetrical around the diagonal. (B) Plots show mean time × time correlations for representational structure in the contralateral and ipsilateral hemispheres 
for the single peripheral (left) and dual peripheral (right) conditions. Plots are thresholded by points with evidence for cross-hemispheric correlations different from zero 
(BF > 3). The highest correlations were observed for contralateral to ipsilateral delays in the peripheral conditions (i.e., below diagonal correlations). (C) Time of reliable 
interhemispheric correlations. Histograms show the number of reliable (BF > 3) positive hemispheric correlation time points as a function of contralateral and ipsilateral 
time. (D) Mean interhemispheric correlation values across participants for different ipsilateral-contralateral delays. Inset plot shows overlaid correlations as a function of 
absolute hemispheric time delay, and the plot below shows BFs associated with the differences between positive and negative delays. Correlations were higher for the 
positive contralateral earlier delays than the negative delays for the single peripheral but not the dual peripheral condition. RH, right hemisphere; LH, left hemisphere.
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(contralateral earlier than ipsilateral). In the single peripheral con-
dition, the mean correlation was reliably higher for positive “contra-
lateral earlier” than negative “ipsilateral earlier” offsets between 14 
and 38 ms (BFs > 10). This provides support for an asymmetry in 
hemispheric processing, with contralateral processing preceding ip-
silateral processing. The dual peripheral condition did not show a 
reliable asymmetry (Fig. 5D). The same pattern of results is ob-
served when the analyses are restricted to the 24 object stimuli (see 
the Supplementary Materials).

Consistency within and across hemispheres
Next, we assessed the consistency in the structure of information 
within a hemisphere compared to information that is shared across 
hemispheres, to quantify unique versus shared hemispheric informa-
tion. Within-hemisphere consistency was calculated as the correla-
tion between RDMs from odd and even trial sequences for a given 
hemisphere. This correlation is a measure of reliability, which acts as 
a noise ceiling, the maximal correlation that could be expected with 
that hemisphere. Across-hemisphere consistency was calculated as 
the correlation between RDMs from the left and right hemispheres 
for odd and even trial sequences (as in Fig. 5). Mean within versus 
across hemisphere consistency for the single peripheral condition is 
shown in Fig. 6, collapsed across the left and right hemispheres to 
assess information within the contralateral and ipsilateral hemi-
spheres relative to the shared information between them. Overall, 
there were higher correlations within the contralateral hemisphere 
than the shared (“across”) hemisphere correlations but no reliable 

differences between the ipsilateral consistency and the shared infor-
mation. Together, these results suggest that the contralateral hemi-
sphere contains unique information over and above that in the 
ipsilateral hemisphere but that the information in the ipsilateral 
hemisphere is a subset of that from the contralateral hemisphere.

Behavioral relevance of neural representations
Having established that the representations of visual stimuli vary ac-
cording to stimulus visual field and hemisphere and that these repre-
sentations are shared across hemispheres, we assessed their behavioral 
relevance to give insight into the content of the neural representations. 
We collated the perceptual dissimilarity of the 36 experimental stimu-
li obtained using online experiments. In each experiment, participants 
were presented with three stimuli simultaneously and asked to choose 
the odd-one-out according to two sets of instructions: “choose the one 
that looks different” (image task) or “choose the one that is conceptu-
ally different” (concept task) (Fig. 7A). Stimulus dissimilarity was cal-
culated as the proportion of odd-one-out choices for pairs of stimuli 
when they were presented together.

The behavioral results revealed that similarity judgments reflected 
both object category and meaning. To assess how the stimuli were 
clustered on the basis of similarity judgments per task, we correlated 
the behavioral RDMs (Fig. 7C) with models based on image/word 
category regardless of the object meaning (image model) and object 
type (concept model) (Fig. 7B) using Spearman correlation. The im-
age model correlated with behavioral judgments in the image task 
(r = 0.81, P < 0.001) and the concept task (r = 0.28, P < 0.001). In 

Fig. 6. Consistency of information within versus across hemispheres. Correlations between representational structure within and across hemispheres show unique 
information in the contralateral hemisphere above information that is shared with the ipsilateral hemisphere but no unique information in the ipsilateral hemisphere. 
“Within” hemisphere consistency is calculated from a given hemisphere (contralateral/ipsilateral) using split-half Spearman correlation. “Across” hemisphere consistency 
is calculated as the correlation between the left and right hemispheres (as in Fig. 5). Results are shown from the single peripheral condition.
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addition, the concept model which distinguished the six object cate-
gories (bird, fish, tree, boat, face, and tools), regardless of image/word 
status, also correlated with behavior on the image task (r  =  0.30, 
P < 0.001) and the concept task (r = 0.59, P < 0.001). The two behav-
ioral RDMs were significantly correlated (r = 0.61, P < 0.001; see the 
Supplementary Materials for all model correlations). However, the 

image model had a higher correlation with the image similarity task 
than the concept similarity task (z = 20.96, P < 0.001), and the con-
cept model had a lower correlation with behavior on the image task 
than the concept task (z = −9.68, P < 0.001). Thus, although both the 
image and concept similarity tasks are correlated with both the image 
and concept models and each other, there is a weighted asymmetry: 

Fig. 7. Behavioral similarity tasks and results. (A) Behavioral task design. Three stimuli were presented simultaneously, and the task was to “choose the image that looks 
different” (image task) or “choose the image that is conceptually different” (concept task). (B) Stimulus models constructed for the 36 stimuli based on whether stimuli 
were images or words (left) or shared the same concepts (right). (C) Dissimilarity matrices based on the results from each behavioral task show relationships between the 
stimuli based on image/word classification (left; image similarity task) and object type (right; concept similarity task). (D) Multidimensional scaling shows how stimuli 
clustered in the behavioral data. For the image similarity task (left), words formed a separate cluster from the images. For the conceptual similarity task (right), words and 
images of the same concept clustered together.
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Images and words were chosen as more dissimilar in the image 
similarity task than the concept task because they look different 
despite sharing meaning and were intermixed and more related to 
the concept of the stimulus independent of perceptual format in 
the concept task. This asymmetry can be seen in the multidimen-
sional visualization of the results, where in the image task, words 
clustered separately to different image categories, but in the con-
ceptual task, words clustered with their associated objects (Fig. 7, 
C and D).

Using the behavioral models constructed from the two tasks, we 
assessed the behavioral relevance of the representations evoked in 
the contralateral and ipsilateral hemispheres. We used RSA to com-
pare the neural representations with behavioral models constructed 
from the image-similarity and concept-similarity versions of the 
odd-one-out task (Fig. 7C). The logic of these analyses is shown in 
Fig. 8A; neural RDMs at each time point were correlated with the 
image task RDM and the concept task RDM to result in a time-
varying neural-behavior correlation for each task. This correlation 
was performed separately for the left and right hemispheres accord-
ing to whether the stimuli were contralateral or ipsilateral. Figure 8B 
shows the mean neural-behavior correlations for contralateral and 
ipsilateral conditions. We found that the behavior reflected neural 
representations in the contralateral hemisphere (as indexed by 
above-zero correlations), and the neural-behavior correlation was 
higher for the image task than the concept task. In contrast, the 
neural-behavior relationship was similar for the image and concept 
tasks in the ipsilateral hemisphere, with greater statistical validity 
for the concept task.

To complement the neural-behavior correlations, we performed 
a commonality analysis. This analysis, similar to that in (31), as-
sessed how each behavioral model was associated with unique 
variance in the neural data and the variance common to both mod-
els. Specifically, we performed linear regression on the neural 
RDMs using the image and concept behavioral models as predic-
tors and compared it to linear regression models with each behav-
ioral model alone. The differences in R2 between models revealed 
the unique variance in the neural data that was related to the image 
and concept models, as well as the variance common to both mod-
els (32). These calculations of commonality were compared to dis-
tributions calculated from 1000 repeats using random permutations 
of the neural RDMs. Figure 8C shows the commonality estimates 
in the contralateral and ipsilateral hemispheres. Time points with 
commonality estimates that exceeded all permutations are marked 
on the plot (P  <  0.001). In both the contralateral and ipsilateral 
hemispheres, there was robust unique variance associated with the 
image model. The concept model was minimally but reliably re-
flected in the contralateral, but not ipsilateral, neural signal. Vari-
ance common to both models was notable in both hemispheres. 
Crucially, the common variance accounted for a much larger pro-
portion of the total variance in the ipsilateral hemisphere than the 
contralateral hemisphere. Together, these results indicate a funda-
mental difference in the types of information represented by the 
contralateral and ipsilateral hemispheres. Specifically, this suggests 
that information transfer from the contralateral to ipsilateral hemi-
sphere might prioritize information that reflects object meaning; 
this likely includes certain visual features that are characteristic of 
object concepts but not image statistics that are less relevant to ob-
ject identity.

DISCUSSION
In this study, we investigated the temporal dynamics of peripheral ob-
ject processing within the left and right hemispheres. Across two differ-
ent peripheral stimulus conditions, we found that image representations 
traverse the hemispheres across multiple stages of processing. Stimulus 
information was initially biased toward the contralateral hemisphere, 
but subsequent stages of processing showed robust neural responses in 
both hemispheres. Dynamics were different in the left and right hemi-
spheres, regardless of whether the images were contralateral or ipsilat-
eral. Specifically, the right hemisphere seemed to derive stimulus 
representations with higher fidelity than the left hemisphere, indepen-
dent of visual field. RSA revealed that information is shared between 
the contralateral and ipsilateral hemispheres with a delay around 15 to 
30 ms. Last, we found evidence that representations in both hemi-
spheres correlate with behavior on stimulus similarity tasks. While the 
contralateral hemisphere was more strongly correlated with image-
related judgments than concept-related judgments, the ipsilater-
al hemisphere showed little difference in behavioral relevance for the 
two tasks. Together, these results suggest that hemispheric transfer pri-
oritizes object category information, which reflects both meaningful 
image features and object meaning, over image statistics that are not 
informative to meaning.

To our knowledge, this is the first study to assess representational 
dynamics in the left and right hemispheres in humans. We provide 
strong evidence of contralateral dominance of perceptual information 
in the visual system. This adds to previous work documenting contra-
lateral dominance in the strength of neural activation (10–12) by 
showing that the contralateral hemisphere also represents visual in-
formation with higher fidelity than the ipsilateral hemisphere. Specifi-
cally, we found stronger and earlier representations for contralateral 
visual field relative to ipsilateral visual field stimuli. Yet, there were still 
relevant representations for ipsilateral stimuli, indexed by above-
chance decoding, indicating that information was transferred from 
the contralateral to ipsilateral hemispheres. This remained true even 
for the dual peripheral condition: Each hemisphere contained infor-
mation about the two stimuli that were presented simultaneously, re-
gardless of whether they were in the contralateral or ipsilateral visual 
field. Our task was irrelevant with respect to the visual stimuli, so the 
sharing of information across hemispheres appears to be a fundamen-
tal feature of neural processing rather than a goal-driven process.

We found evidence for interference of information processing for 
two simultaneously presented peripheral images. Specifically, there 
was a reduction in information in the dual relative to single periph-
eral condition in both the contralateral and ipsilateral hemispheres 
but only after initial stages of processing (later than 150 ms). Thus, the 
first stages of processing seem to proceed unimpeded, likely within 
early visual regions with strong retinotopic organization. Hemispher-
ic transfer then seems to affect subsequent processes within mid- to 
high-level regions that code for objects and are less retinotopic. Previ-
ous EEG–functional magnetic resonance imaging work showed that 
high-level extrastriate regions respond to stimuli from both visual 
fields, whereas low-level extrastriate regions respond primarily to the 
contralateral hemifield (33). We found that the difference in decoding 
between the single and dual image conditions was more robust in the 
ipsilateral hemisphere, which points to these later, high level process-
es being more subject to interference. It should be noted that the si-
multaneous stimuli in the current study were presented in 
symmetrical positions relative to the vertical midline, and it could be 
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Fig. 8. Neural-behavior relationship for image and concept tasks. (A) Explanation of how neural-behavior correlations were calculated. For each hemisphere and vi-
sual field condition, the neural dissimilarities across all 36 images were correlated with the behavioral dissimilarities for the image task and the concept task, separately 
for each neural time point following image onset. The mean was subsequently calculated for the contralateral and ipsilateral conditions per behavioral task (example re-
sults plot shown). (B) Neural-behavior correlations across time for contralateral (left) and ipsilateral (right) stimulus presentations, collapsed across the left and right 
hemispheres. Behavior from the image and concept tasks was reliably reflected in the neural signal in both hemispheres, although with less fidelity in the ipsilateral 
hemisphere particularly for the image task. Results are shown from the single peripheral condition. (C) Commonality analyses. Variance in the neural data from the con-
tralateral and ipsilateral hemispheres that was explained by the image task and concept task models and variance common to the two models. Colored dots above plots 
reflect time points of significant variance explained (P < 0.001).
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that interference is particularly sensitive to this configuration. Never-
theless, the timing of the interference effects highlights some possi-
bilities about the nature of different processing stages, namely 
regarding temporal multiplexing. A growing body of literature has 
revealed that multiple rapidly presented images are represented si-
multaneously in the brain (34–36), yet the temporal resolution of 
processing decreases from low-level to higher-level regions in the vi-
sual hierarchy (37, 38). In the context of peripheral image processing, 
a possibility is that early retinotopic brain regions quickly and process 
input from the contralateral hemifield serially and then transfer in-
formation to higher regions within both hemispheres. These succes-
sive brain regions have longer temporal integration windows, which 
could plausibly lead to interference between different stimuli (e.g., 
masking) but would also enable integration when stimuli presented 
temporally or spatially adjacent are contextually related.

EEG is not known for its high spatial resolution, but we imple-
mented several strategies to ensure that the analyses were assessing 
distinct information from each hemisphere. First, we used clusters 
of electrodes that were spatially distinct, over the left and right oc-
cipitotemporal regions. Electrodes in these regions have previously 
been used to document hemispheric differences for face and word 
perception (39–41). Second, we performed a Laplacian transforma-
tion on the neural responses to highlight local patterns of activity, 
enhancing the spatial resolution of the signals (42). The results indi-
cate that there were distinct sources per hemisphere. The sensor 
searchlight analyses depict clear contralateral sources of informa-
tion, with weaker ipsilateral clusters at later time points (see the 
Supplementary Materials). Last, our time resolved decoding results 
show that the dynamics look distinct in the two hemispheres (e.g., 
with a later peak for ipsilateral stimuli). If there was only one neural 
source of information, then we would expect an overall reduction 
for ipsilateral responses without a change in the timing.

In addition to varying dynamics for contralateral versus ipsilat-
eral representations, the results of this study highlight differences 
between the left and right hemispheres of the brain. In particular, the 
left and right hemispheres seem to retain hemispheric-specific dy-
namics regardless of whether they are contralateral or ipsilateral, 
which is evidence that each hemisphere is specialized for certain 
types of information, and processing is distributed for these different 
processes. Furthermore, there was a consistent trend in which the 
right hemisphere had stronger representations than the left. Given 
the types of stimuli used in the current study, one could surmise that 
the hemispheric differences we observe are driven by the categories 
of words, which tend to be lateralized to the left hemisphere (43), 
and faces, which are lateralized to the right hemisphere (44). How-
ever, we found that even when excluding faces and words from the 
analysis (objects only), there was still a right hemispheric dominance 
in the strength of decoding. For faces and words separately, decoding 
was also numerically stronger in the right hemisphere than the left 
hemisphere, but this was not statistically reliable, possibly due to 
fewer images in each category leading to lower power (see the Sup-
plementary Materials). Together, this hints toward more general 
hemispheric processing differences, potentially centered around bi-
ases for specific visual features. It has been postulated that the two 
hemispheres contain distinct subsystems for abstract and specific 
visual object recognition (45, 46), with the right hemisphere more 
effective for specific exemplar recognition, so one possibility is that 
the focus on stimulus information in the current study inadvertently 
biased toward a right hemispheric advantage. However, it should be 

noted that the hemispheric neural-behavioral analyses showed 
stronger correlations for the image task in the right hemisphere, but 
there was no left advantage for the concept task, a task that likely 
required a more abstract recognition strategy.

Despite hemispheric differences, there was evidence of clear repre-
sentational overlap between the hemispheres. Our results show that 
the ipsilateral hemisphere represents stimulus information similarly 
but after a delay relative to the contralateral stimulus. Our estimates of 
the delay were on the order of 15 to 30 ms. This again points to clear 
evidence of information transfer from one hemisphere to the other. 
More support for this transfer delay is evident from the delay of de-
coding onset for ipsilateral relative to contralateral stimuli (see Table 
1). Beyond the timing differences, the similarity in the structure of 
stimulus representations between the hemispheres contralateral and 
ipsilateral to the experimental stimuli suggests an element of redun-
dancy in the system. The ipsilateral hemisphere receives peripheral 
visual information indirectly, via the contralateral hemisphere, so 
shared or redundant information does not come as a surprise. Yet, this 
indirect transfer does not preclude different processes being carried 
out on inputs to the contralateral and ipsilateral hemispheres. We 
found that the information within the hemisphere ipsilateral to the 
stimulus did not contain any unique information relative to the con-
tralateral hemisphere, but rather the information was largely dupli-
cated throughout the time course of processing. However, the specific 
information that was transferred to the ipsilateral hemisphere was 
only a subset of that represented within the contralateral hemisphere. 
This raises the possibility that hemispheric transfer operates as a filter-
ing mechanism, modulating neural activity to focus the most impor-
tant types of information. Evidence suggests that cross-hemispheric 
neurons are mainly excitatory, but they target both excitatory and in-
hibitory neurons (47), which seems a plausible route for information 
pruning. So, despite the apparent redundancy across the hemispheres, 
perhaps the ipsilateral hemisphere plays an important role in being 
able to process only the most relevant information.

Our analyses into the behavioral relevance of the neural repre-
sentations support this “filtering via hemispheric transfer” theory. 
The contralateral hemisphere was biased toward perceptual over 
conceptual judgments, with behavioral responses on the image task 
correlating more strongly with the neural signal than responses on 
the concept task. Yet, in the ipsilateral hemisphere, there was little 
difference between the behavioral relevance for perceptual and con-
ceptual judgments. Behavioral responses in the image task and the 
concept task, while separable, were highly correlated, so we would 
not expect them to necessarily dissociate. The commonality analysis 
revealed reliable variance common to the two behavioral models in 
both the contralateral and ipsilateral hemispheres. We suggest that 
this common variance reflects judgments that are similar between 
the two tasks, which seem to be object-category focused. In con-
trast, the types of information that were lost to hemispheric transfer 
mainly related to perceptual judgments, likely related to image sta-
tistics. These findings indicate that hemispheric transfer might pri-
oritize information relating to object identity; this includes object 
meaning as well as image features that are characteristic of object 
identity (e.g., trees tend to be green).

There are still many open questions about the nature of hemi-
spheric functioning and hemispheric transfer. Here, we only tested 
stimuli with a fixed eccentricity along the horizontal meridian, but 
hemispheric processing might vary with the location and eccentric-
ity of stimuli in the visual field; for example, increasing eccentricity 
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might increase the hemispheric delay. Testing stimuli in various lo-
cations across the visual field might give clues into the timing and 
content of perceptual processing within each hemisphere. It would 
also be interesting to probe the degree to which semantic informa-
tion is extracted from peripheral stimuli in such paradigms and its 
representation in each hemisphere. Relatedly, investigating seman-
tics might help disentangle the specific types of information that are 
prioritized for transfer across the hemispheres, for example, using 
tasks that dissociate information about image features from those 
of conceptual content. The current study did not focus on semantic 
integration, but the current paradigm could also be used to assess 
how the brain extracts perceptual and semantic information in natu-
ralistic scenes, particularly in the case of congruent or incongruent 
information across the hemifields. Overall, we think that this is a 
promising line of research with exciting possibilities in investigat-
ing how the left and right hemispheres of the brain work together 
for perception.

MATERIALS AND METHODS
Participants
Participants were 20 adults recruited from the University of Sydney 
(15 females; median age, 22 years) in return for payment or course 
credit. This sample size is similar to previous work on contralateral 
visual responses (18) and the temporal dynamics of visual processing 
(34, 36). The study was approved by the University of Sydney ethics 
committee (approval #2016/849), and informed consent was ob-
tained from all participants. Edinburgh handedness scores indicated 
that 17 participants were right-handed, 1 was left-handed, and 2 were 
ambidextrous. The same trend in results was seen if only right-
handed individuals were analyzed (see the Supplementary Materials). 
All participants reported normal or corrected-to-normal vision.

Stimuli and design
Participants viewed images that appeared centrally or to the left or 
right of fixation on a 1920 × 1080 resolution ASUS VG236 monitor, 
while their neural activity was measured with EEG. There were 36 
stimuli: four different image exemplars of six basic objects: fish, bird, 
face, boat, tree, and tool; and word labels for the same six objects in 
lower- and uppercase letters (Fig. 1A). Half the trials were words, 
and half were objects. Stimuli were presented at approximately 
3.24° × 3.24° of visual angle and at an eccentricity of 3.24° to the 
center of the object. All stimuli were presented using PsychoPy (48). 
We intended to present the words in italics as well as original type-
face, but an unforeseen issue with the PsychoPy presentation meant 
that the italics were not applied, so each specific word stimulus was 
presented double the number of times compared with each object 
(but only half of these were analyzed; see below).

There were three types of experimental sequences: central, single 
peripheral, and dual peripheral (Fig. 1B). These sequences were in-
terleaved throughout the experimental session. Here, we focus only 
on the peripheral and dual peripheral sequences as these inputs are 
projected to a single hemisphere in a bottom-up fashion. In each 
sequence, there were 192 trials. Each trial was presented for 100 ms 
with a gap of 100 ms between trials (5-Hz presentation). In the sin-
gle peripheral condition, stimuli were presented half to the left and 
half to the right of fixation equiprobably and in random order, with 
only one stimulus presented at a time. Each sequence consisted of 
four repeats per object stimulus (two on the left and two on the 

right) and eight repeats per word stimulus (four left; four right). In 
the dual peripheral condition, every trial consisted of one stimulus 
to the LVF and one to the RVF simultaneously. There were 96 im-
ages and 96 words on each side in random combinations. Within 
each sequence, trials were presented in random order.

Across the experiment, there were 24 single peripheral and 12 
dual peripheral sequences, which, in total, contained the same num-
ber of stimulus repeats per visual field. In sum, there were 48 repeats 
of each of the 24 image stimuli and 96 repeats of each of the 12 word 
stimuli in each hemifield for each condition. To maintain equal trial 
numbers per class, only 48 repeats for the word stimuli were ana-
lyzed, randomly selected.

During the experimental session, participants were asked to 
monitor the three dots (central fixation, left, and right) marking the 
possible stimulus locations and detect when one turned red (Fig. 
1B) and indicate detection by button press. Participants were asked 
to maintain fixation on the central dot. This task was designed to be 
orthogonal and irrelevant to the stimuli. The fast stimulus presenta-
tion, random image sequences, and the orthogonal task reduced the 
likelihood of participants moving their eyes in a stimulus-specific 
manner. Yet, the task ensured that participants maintained attention 
across the whole visual field throughout the experiment, regardless 
of stimulus presentation condition.

EEG recording and preprocessing
EEG data were continuously recorded from 64 electrodes arranged 
in the international 10-20 system for electrode placement (49) using 
a BrainProducts ActiChamp system, digitized at a 1000-Hz sample 
rate. Scalp electrodes were referenced to Cz during recording. The 
EEGLAB toolbox (50) was used to preprocess the data offline. First, 
we interpolated electrodes that exceed 5 SDs of kurtosis, and then a 
common average reference was applied. We filtered the data using a 
Hamming windowed sinc finite impulse response (FIR) filter with 
highpass of 0.1 Hz and lowpass of 100 Hz as in our previous work 
(34, 36). Downsampling was not applied, so the temporal resolution 
of the data was 1 ms. Epochs were created for each stimulus presen-
tation ranging from −100 to 800 ms relative to stimulus onset. Last, 
we used the current source density (CSD) toolbox (51) to perform a 
Laplacian transformation (42) which calculates the second spatial 
derivative of the scalp potentials. This transformation enhances the 
spatial resolution of the EEG signal at the scalp, in our case ensuring 
greater distinction between left and right hemispheric responses.

Neural decoding
To investigate the neural representations of lateralized stimuli in the 
two hemispheres, we used MVPA to assess stimulus-specific repre-
sentations per hemifield (left/right), hemisphere (left/right), and 
presentation condition (single/dual peripheral). Given that EEG re-
sponses are typically stronger for contralateral stimuli (12), we ex-
pected that stimuli would also be represented with higher fidelity in 
the contralateral hemisphere than the ipsilateral hemisphere and 
potentially represented with different dynamics. Further, we were 
interested in how conflicting information to the hemispheres (as in 
the dual peripheral condition) influenced the neural representations 
relative to the single peripheral condition.

EEG data were analyzed using time-resolved classification meth-
ods and implemented using the CoSMoMVPA toolbox (52). Decod-
ing was performed separately for the left and right hemispheres using 
clusters of six occipito-temporal electrodes (Fig. 1C). The electrodes 
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chosen were O1, PO3, PO7, P3, P5, and P7 for the left cluster and O2, 
PO4, PO8, P4, P6, and P8 for the right cluster. These clusters encom-
pass similar electrodes to previous work investigating lateralized re-
sponses (39–41) but containing sufficient electrodes to allow for 
pattern analysis. The trend in decoding across conditions did not ap-
pear dependent on the specific electrodes chosen; see the Supple-
mentary Materials for decoding with larger clusters encompassing 
more anterior electrodes. Decoding was performed separately for 
each participant, for each presentation condition (single/dual × left/
right hemifield), and for each single time point in the epoch (1-ms 
time resolution). Data were pooled across the six EEG sensors in each 
cluster, and we tested the ability of a linear discriminant analysis clas-
sifier to discriminate between the patterns of neural responses associ-
ated with each stimulus. A 12-fold cross-validation procedure was 
used, with each fold containing independent trial sequences. All pairs 
of combinations for the 36 stimuli (e.g., face1 versus tree2 and word-
tool1 versus fish4) were decoded, resulting in 630 unique contrasts 
across time per condition per participant. Classifier accuracy was cal-
culated as the proportion of correct classifier predictions across all 
folds, and the group mean was calculated per condition. All decoding 
contrasts were pairwise, so chance performance was 0.5. Accuracy of 
classifier predictions reflected the information in the neural signal, 
where above-chance classification accuracy (>0.5) indicated that the 
hemisphere contained information about the stimuli.

Behavioral similarity task
We were also interested in how the neural responses within each 
hemisphere related to behavioral judgments for the same stimuli. In 
two online experiments (53), conducted independently of the EEG 
acquisition, new groups of participants rated the similarity between 
the experimental stimuli using a triplet odd-one-out task (54, 55) 
with the 36 experimental stimuli.

Participants were undergraduate students from the University of 
Sydney who participated in return for course credit. The experi-
ments were programmed in jsPsych (56) and hosted on Pavlovia 
(48). In each experiment, there was a separate set of instructions: 
choose the one that looks different (N = 21) or choose the one that 
is conceptually different (N = 21). On each trial, three experimental 
stimuli were presented simultaneously, and participants were asked 
to choose the odd one out by clicking on the stimulus (Fig. 2A). 
There were 400 trials in the experiment, and stimulus combinations 
were randomly chosen.

Behavioral responses were used to construct RDMs for each task. 
For each trial, we calculated dissimilarity across the pairs of stimuli 
(three pairs for the three distinct stimuli). The chosen odd-one-out 
stimulus was coded as dissimilar from each of the other two stimuli 
(value of 1), and the two other stimuli were coded as similar (value 
of 0). Across all trials of all participants, the dissimilarity of each 
stimulus pair (e.g., face1 versus word-tree2) was calculated as the 
mean response for all trials in which those two stimuli were pre-
sented together, a measure of their relative similarity to each other 
compared with the other stimuli in the set.

Representational similarity analyses
To investigate the relationship in the structure of stimulus representa-
tions between the two hemispheres, we used RSA (30). RSA allowed 
a comparison between hemispheres which was abstracted away from 
specific neural activity patterns and rather focused on the relation-
ships between stimulus representations. In this case, RSA allowed 

hemispheric-specific representations to be compared with represen-
tations of the other hemisphere in the single and dual peripheral con-
ditions. In a subsequent set of analyses, we used RSA to compare 
representations within each hemisphere with behavioral judgments, 
to assess the content of information within each hemisphere.

Using the neural and behavioral results, we constructed RDMs, 
which quantified the similarity between each stimulus (e.g., Fig. 
5A). Each of these RDM models was a 36 × 36 matrix of dissimilar-
ity for each of the 36 stimuli with each other stimulus, using the 
relevant neural or behavioral measure. The RDMs were symmetrical 
across the diagonal, with 630 unique values. Neural RDMs used de-
coding accuracy for each pair of stimuli at each time point (1-ms 
temporal resolution). Separate 36 × 36 stimulus RDMs were con-
structed for each hemisphere, time point, and participant, where 
each cell contained the mean decoding accuracy between two stim-
uli. The behavioral RDMs were based on the group mean dissimilar-
ity scores from the two behavioral experiments. We also constructed 
two additional stimulus models based on the stimulus category 
(image/word) and concept (e.g., tree, tool, and face).

Using RSA, we investigated how representations varied across 
the hemispheres. First, we correlated the left and right hemisphere 
RDMs using Spearman correlation to assess similarity of the lower 
diagonals of the RDMs (i.e., the unique pairwise values), for every 
pair of time points. This allowed us to assess how representations 
were similar across the hemispheres, and whether this similarity was 
dependent on transfer delays. Last, we correlated the neural models 
across time with each behavioral model to assess how neural infor-
mation might inform overall perception. Correlations were per-
formed for each EEG participant separately, and the mean was 
calculated across the group.

For any analyses comparing hemispheres, we used a split-half 
comparison method to reduce spurious correlations due to corre-
lated noise. Specifically, we constructed two RDMs per condition, 
based on odd or even sequences (i.e., using sixfold cross-validation 
to decode stimulus pairs). We then assessed similarity in neural 
RDMs across hemispheres by using different sequences; for exam-
ple, comparing the left hemisphere RDM from odd sequences with 
the right hemisphere RDM from even sequences and vice versa and 
then taking the mean.

Statistical testing
To assess neural representations within the hemispheres, we used 
Bayesian statistics to determine the evidence for the alternative relative 
to the null hypotheses (57–61). For decoding analyses, the alternative 
hypothesis of above-chance (50%) decoding was tested. For correla-
tion analyses, the alternative hypotheses of above- and below-zero 
correlations were tested. We used the “BayesFactor” package in R (62). 
BFs were calculated using a Jeffreys-Zellner-Siow (JZS) prior, centered 
around chance decoding of 50% (60) with a default scale factor of 
0.707, meaning that for the alternative hypotheses of above- and be-
low- chance decoding, we expected to see 50% of parameter values 
falling within −0.707 and 0.707 SDs from chance (59, 60, 63, 64). A 
null interval was specified as a range of effect sizes between −0.5 
and 0.5 (65).

A BF is the probability of the data under the alternative hypoth-
esis relative to the null hypothesis. We consider BF > 3 as evidence 
for the alternative hypothesis (above-chance decoding and reliable 
correlations). To calculate the onset of effects, we used a conserva-
tive estimate of the first time that there was sustained evidence for 
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10 ms (10 consecutive time points with BF > 10). We interpreted 
BF < 1/3 as evidence in favor of the null hypothesis (59, 66).

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S14
Table S1
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