SCIENCE ADVANCES | RESEARCH ARTICLE

W) Check for updates

COGNITIVE NEUROSCIENCE

Dynamics of visual object coding within and across the
hemispheres: Objects in the periphery

Amanda K. Robinson'%3, Tijl Grootswagers4'5, Sophia M. Shatek®®,

Marlene Behrmann’’?, Thomas A. Carlson®

The human brain continuously integrates information across its two hemispheres to construct a coherent repre-
sentation of the perceptual world. Characterizing how visual information is represented in each hemisphere over
time is crucial for understanding how hemispheric transfer contributes to perception. Here, we investigated infor-
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mation processing within each hemisphere over time and the degree to which it is distinct or duplicated across
hemispheres. We presented participants with object images lateralized to the left or right visual fields while mea-
suring their brain activity with electroencephalography. Stimulus coding was more robust and emerged earlier in
the contralateral than the ipsilateral hemisphere. Presentation of two stimuli, one to each hemifield, reduced the
fidelity of representations in both hemispheres relative to one stimulus alone, signifying hemispheric interfer-
ence. Last, we found that processing within the contralateral, but not ipsilateral, hemisphere was biased to image-
related over concept-related information. Together, these results suggest that hemispheric transfer operates to
filter irrelevant information and efficiently prioritize processing of meaning.

INTRODUCTION

The human brain has two distinct but connected hemispheres that
must communicate and coordinate to yield unitary visual percep-
tion. Because of the contralateral arrangement of the visual system,
stimuli presented to one hemifield are initially processed in the op-
posite hemisphere. Yet, from this hemisphere-distinct processing, a
single coherent percept of the visual world emerges, highlighting the
importance of hemispheric integration. The nature of hemispheric
processing has fascinated cognitive neuroscientists for decades. For
example, studies using split-brain patients, who had the corpus cal-
losum surgically severed, have shown that the left and right hemi-
spheres can have different perceptual experiences and responses to
the same stimulus (1, 2). The mechanisms underlying hemispheric
transfer are complex, involving communication between brain re-
gions at different levels of processing, but understanding how neural
processing results in perception requires a better understanding of
information processing within and across hemispheres.

The left and right hemispheres of the brain are largely homolo-
gous in terms of structure and function. The strength in this dupli-
cation, or redundancy, can be borne out in behavior; for example,
interhemispheric cooperation can improve performance on highly
complex tasks (3, 4). Neurally, interhemispheric communication is
facilitated by a number of anatomical connections between the left
and right hemispheres, including the corpus callosum, posterior
commissure, and anterior commissure (5-7). These connections
allow the two hemispheres to share information and coordinate
their activities. For visual perception, the integration of information
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across the hemispheres is crucial yet is not as well characterized as
other aspects of visual processing. The hierarchical nature of visual
processing has been well-studied; across the swath of visual cortex,
there is a hierarchical flow of features, starting with sensitivity to
low-level features such as straight edges coded in primary visual
cortex, through successive stages to higher-level categorical features
associated with specific patterns (e.g., words or faces) coded in ven-
tral temporal cortex (8, 9). Models of the visual system, however,
typically do not consider the interplay between the two hemispheres,
despite their joint involvement in perception. Here, we map the dy-
namics of information coding within each hemisphere and the shar-
ing of this information across hemispheres.

Neural recordings have shed light on the computations that un-
derlie hemispheric processing. Studies using electroencephalogra-
phy (EEG) in humans have shown earlier and stronger evoked
responses over the scalp contralateral to stimulus presentation rela-
tive to the ipsilateral side, consistent with the trajectory of fibers
from the eyes to the contralateral hemisphere (10-12). Interhemi-
spheric transfer time calculated from event-related potentials in oc-
cipital brain regions have been observed between 13 and 26 ms
(10, 12, 13), varying by stimulus location and intensity (14, 15). Oth-
er work has used functional magnetic resonance imaging to charac-
terize retinotopic biases within the brain, specifically showing the
dominance of contralateral responses for visual processing through-
out occipital cortex (16) and parietal cortex (17, 18), as well as other
regions of the brain such as the hippocampus (19). Regions of visual
cortex typically considered category-selective exhibit contralateral
biases and distinct responses across the hemispheres (20, 21). This
vast coding of visuospatial maps with contralateral biases within the
brain has implications for cognitive functioning (22). The inferred
but untested implication is that the contralateral hemisphere initially
registers the sensory information and then propagates a subset of
this information to the ipsilateral hemisphere. Yet, strength of neural
activation is not necessarily correlated with strength of information
coding (23). A pertinent question, then, and the focus of this paper
is how the representations derived in the contralateral and ipsilateral
hemispheres differ.
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Studying hemispheric information has proven difficult in hu-
mans due to traditional analytic methods of neural data that obscure
subtle neural patterns of activity. With the advent of multivariate
pattern analyses (MVPA), or neural “decoding,” however, we can
study what is represented in the brain using noninvasive neural re-
cordings in humans (24). Combined with high temporal resolution
neuroimaging methods such as EEG, MVPA can elucidate the time
course and fidelity of stimulus information within neural patterns of
activity. Time-resolved neural decoding methods have shown that
visual information is represented quickly in the brain, occurring in
less than 100 ms from stimulus onset (25, 26). Notwithstanding this
rapid time course, EEG has sufficient resolution to detect high spa-
tial frequency neural activity early in the course of signal propaga-
tion (27), making it possible to separate signals from the left and
right hemispheres and permitting opportunities to study dynamics
of information within each hemisphere.

Here, we use EEG and multivariate analyses to investigate the rep-
resentation of visual information within each hemisphere and the
similarities across hemispheres over time. We used a rapid serial vi-
sual presentation paradigm with visual stimuli presented to the left
and right hemifields, while neural activity was measured using EEG
(Fig. 1). The goals of this study were threefold. First, we assessed how
the contralateral and ipsilateral hemispheres process visual signals
from the periphery (projected just to one hemisphere initially) over
time. Second, we presented stimuli to the left and right hemifields si-
multaneously to understand how processing changes when different
signals project to the two hemispheres, with the expectation that there
might be interference in the representations. Last, to understand the
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content of hemispheric information, we assessed how the neural rep-
resentations per hemisphere compare to similarity judgments on in-
dependent perceptual and conceptual tasks. We found clear
contralateral dominance in the strength of visual coding, as expected.
Further, we found reduction in information when two different stim-
uli were shown, one to each hemifield, suggesting that there may be
interference or competition for representation between contralateral
and (propagated) ipsilateral information. With respect to behavior,
we found that the contralateral hemisphere contains more informa-
tion relevant to perceptual than conceptual judgments but that this
perceptual bias is largely missing in the ipsilateral hemisphere. This
finding provocatively indicates that interhemispheric transfer might
efficiently prioritize meaning rather than image statistics. These re-
sults yield great insights into hemispheric processing, the complex
interplay between the two hemispheres, and how they cooperate to
create a unified representation of the visual world.

RESULTS

Neural dynamics of stimulus representations: Single
peripheral condition

To investigate hemispheric dynamics when processing was biased to one
hemisphere, we assessed the neural representations of stimuli shown pe-
ripherally to the contralateral and ipsilateral visual fields (Fig. 1B, top).
MVPA, or neural decoding, was applied to the time-resolved EEG data to
discriminate how different stimuli evoked different patterns of neural ac-
tivity over the scalp (24, 28). For each presentation condition (single pe-
ripheral and dual peripheral), stimulus hemifield (left/right), hemisphere

Dual peripheral condition

Fig. 1. Experimental design. (A) Stimuli were 36 images of objects and matching word labels for six different object categories. (B) Example sequence timeline for single
peripheral and dual peripheral conditions. (C) Electrode clusters for left hemisphere and right hemisphere analyses.
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(left/right), time point, and participant, we assessed stimulus-specific
representations by training a classifier to discriminate between neural
activity associated with two experimental stimuli and testing on held out
data for the same stimuli. This procedure was repeated for all pairs of the
36 experimental stimuli (630 stimulus pairs), and the mean pairwise de-
coding accuracy was assessed for the participant group per condition.
Above-chance decoding accuracy (above 50%) was considered evidence
of stimulus information in the neural signals.

Decoding was performed separately using clusters of electrodes
measuring from the left and right hemispheres over time (Fig. 1C).
Stimulus information coded within each hemisphere, as indexed by
mean pairwise decoding accuracy, showed clear contralateral domi-
nance (Fig. 2, A and B). In the left hemisphere, right visual field (RVF)

stimuli showed higher decoding and earlier onset (peak = 53.39%, on-
set = 79 ms) than left visual field (LVF) stimuli (peak = 51.68%, on-
set =96 ms). Similarly, in the right hemisphere, the contralateral (LVF)
stimuli showed higher decoding and earlier onsets (peak = 54.98%,
onset = 78 ms) than RVF stimuli (peak = 52.53%, onset = 91 ms).
Furthermore, comparison of peak times for each hemifield revealed
earlier peak decoding for the contralateral hemisphere than the ipsilat-
eral hemisphere (see Table 1). Representations in the right hemisphere
were stronger than those in the left hemisphere for both contralateral
and ipsilateral stimuli (Fig. 2C), consistent with previous reports (29).
Notably, this right-hemispheric dominance was not driven by the faces
in the stimulus set; the 18 nonface objects also produced stronger right
hemisphere representations when analyzed separately (see the
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Fig. 2. Peripheral stimulus representations in the left and right hemispheres (single peripheral condition). Neural representations for stimuli in the single periph-
eral condition across time (1-ms resolution), as indexed by mean decoding accuracy of pairs of experimental stimuli. Accuracy of decoding is plotted separately for stim-
uli appearing in the contralateral and ipsilateral visual fields. (A) Decoding using cluster of electrodes over the left hemisphere. (B) Decoding using cluster of electrodes
over the right hemisphere. (C) Difference between right and left hemisphere decoding accuracy. Shaded lines indicate SEM. Contralateral representations were stronger,
with earlier peaks and onsets than ipsilateral representations. Right hemisphere representations were stronger than the left for contralateral stimulus presentations. Bot-
tom plots show Bayes factors (BFs) which indicate the evidence for above-chance decoding per condition or nonzero differences between conditions.

Table 1. Onset time (with 95% confidence intervals in brackets), time of peak decoding, and peak decoding accuracy for single and dual peripheral
conditions. Onsets and peaks according to condition (single/dual peripheral), hemisphere, and side of stimulus presentation (LVF/RVF). Contralateral
combinations are in bold. Onsets were calculated as the time of the first time Bayes factors were above 10 for 10 ms consecutively. Confidence intervals were
calculated using jackknifing to subsample participants (leave-two-participants-out; 190 unique permutations) to yield a distribution of onset and peak times.

Onset time Time of peak decoding Peak decoding accuracy
LH RH LH RH LH RH
Single peripheral  LVF 96 [91-104] 78[77-79] 244 [244-262] 214[129-243] 51.68% 54.98%
RVF .................................... 79 [77—81] ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 91[90_104] ‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 1 52[ 152_201] 2 41[241_24” 5339% ........................ 5253% ,,,,,,,,,,,,
Dualperipheral ~ LVF 99[97-105] 78[76-82]  254[111-254]  115[114-215] 5093%  5449%
RVF .................................... 69[68—78] ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 85[79—87] 202[202_204] 245[244_257] 5313% ........................ 5127% ,,,,,,,,,,,,
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Supplementary Materials). Overall, decoding of single stimuli present-
ed to a hemifield provided support for differing dynamics in each
hemisphere and a contralateral precedence in the visual system. Next,
we turned to how the dynamics of representation varied when there
were competing visual inputs from the two hemifields.

Neural dynamics of stimulus representations: Dual
peripheral condition

We were interested in how representational dynamics varied accord-
ing to the contralateral and ipsilateral sides when two stimuli were
presented simultaneously: one to the LVF and one to the RVF (Fig. 3).
Given the ubiquitous nature of hemispheric transfer, we expected that
the fidelity of stimulus information might be reduced when there are
competing inputs to the two hemispheres. For this dual peripheral
condition, decoding was performed for each stimulus separately but,
now, in the context of a second stimulus in the other field. Again, as
above, there was clear contralateral dominance in both the left and
right hemispheres (Fig. 3, A and B). In the left hemisphere, the RVF
stimuli showed higher decoding and earlier onset (peak = 53.13%,
onset = 69 ms) than LVF stimuli (peak = 50.93%, onset = 99 ms).
Echoing these results, in the right hemisphere, the contralateral (LVF)
stimuli showed higher decoding and earlier onsets (peak = 54.49%,
onset = 78 ms) than RVF stimuli (peak = 51.27%, onset = 85 ms).
Right hemisphere superiority was reliable for contralateral but not ip-
silateral representations (Fig. 3C). Together, these results show that
even when there is competing information from the two hemifields,
information about each stimulus is processed by both hemispheres of

the brain at the same time. Whether these dynamics were similar be-
tween the single and dual peripheral conditions was tested next.

Comparison of single and dual peripheral presentation
To assess whether the addition of a second stimulus in the dual pe-
ripheral condition interfered with the fidelity of stimulus representa-
tions, we compared the timing and strength of decoding in the single
and dual peripheral conditions. Inspection of decoding onset time
revealed earlier onsets for contralateral than ipsilateral stimuli, with
contralateral decoding beginning before 80 ms and ipsilateral decod-
ing tending to begin after 90 ms, regardless of which hemisphere or
condition was being assessed (Table 1). Thus, the initial stage of stim-
ulus processing was not influenced by clutter in the display.
However, there was a decrease in stimulus-related information in
the brain in the dual peripheral relative to the single peripheral condi-
tion (Fig. 4). To compare the representations encoded by the brain be-
tween conditions, we assessed decoding accuracy in each condition for
contralateral and ipsilateral stimuli, collapsed across the left and right
hemispheres. For both contralateral and ipsilateral combinations, stim-
ulus representations were more robust for the single peripheral than the
dual peripheral condition, indicating that a stimulus presented in the
other visual field decreased the fidelity of stimulus representations.

Representational similarity analyses: Comparison

across hemispheres

We were next interested in the structure of representations in the two
hemispheres of the brain. The hypothesis was that stimulus coding in
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Fig. 3. Peripheral stimulus representations in the left and right hemispheres (dual peripheral condition). Neural representations when two stimuli are presented to
different hemispheres, as indexed by mean pairwise decoding accuracy. Accuracy is plotted separately for stimuli appearing in the contralateral and ipsilateral visual
fields. (A) Decoding using cluster of electrodes over the left hemisphere. (B) Decoding using cluster of electrodes over the right hemisphere. (C) Difference between right
and left hemisphere decoding. Shaded lines represent SEM. Representations for the contralateral stimuli were stronger, with earlier peaks and onsets than for ipsilateral
stimuli. Right hemisphere representations were stronger than the left for contralateral stimuli. Bottom plots show BFs which indicate the evidence for above-chance de-

coding per condition or nonzero differences between conditions.
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Fig. 4. Decoding accuracy for peripheral stimuli when presented alone (single) or with another stimulus (dual). Decoding accuracy is plotted according to whether
stimuli were contralateral or ipsilateral relative to the electrode cluster. These results are collapsed across the left and right hemispheres. Information was stronger in the
single peripheral condition than the dual peripheral condition (see BFs for difference), for both contralateral and ipsilateral stimuli. Shaded lines represent SEM. Bottom
plots show BFs indicating the evidence for nonzero differences between single and dual conditions.

the ipsilateral hemisphere should reflect the same representations as
the contralateral hemisphere but following a delay approximating in-
terhemispheric transfer time. To investigate the relationship between
representations in the two hemispheres, we used representational
similarity analyses (RSA) (30), which abstracts away from specific
activity patterns (e.g., from EEG electrodes over the left hemisphere)
to the relationships between different stimulus representations.

For each presentation condition (single peripheral and dual pe-
ripheral), stimulus visual field (LVF/RVF), time point, and participant,
we constructed neural representational dissimilarity matrices (RDM:s)
to quantify the dissimilarity in the representations of all 36 stimuli (i.e.,
in a 36 X 36 matrix with 630 unique values). The RDMs from the left
and right hemispheres were then correlated for all possible time points
(Fig. 5A). These analyses were performed in a split-half manner, where
correlations were always calculated across separate experimental se-
quences. Correlations between contralateral and ipsilateral hemi-
spheres were assessed by collapsing across relevant visual field and
left/right hemispheres. We found evidence for shared representations

Robinson et al., Sci. Adv. 11, eadq0889 (2025) 1 January 2025

across the contralateral and ipsilateral hemispheres, particularly be-
tween 100 and 300 ms after stimulus onset (Fig. 5B). These correla-
tions were more reliable for the single peripheral condition than the
dual peripheral condition. This suggests that information that is trans-
ferred from the contralateral to ipsilateral hemisphere maintains a
stimulus-specific structure but that transfer is reduced in the case of
competing information (as in the dual peripheral condition).

To assess the timing of information sharing, we assessed the num-
ber of time points with reliable correlations [Bayes factor (BF) > 3]
as a function of time for the contralateral and ipsilateral hemispheres.
As expected, times were earlier for the contralateral than ipsilateral
hemisphere (Fig. 5C). The time delay in hemispheric processing
was assessed by calculating mean correlation values for a range of
ipsilateral-contralateral delays per participant (—100 to 100 ms). These
are the mean values for off-center diagonals between 0 and 500 ms
of the time generalization RSA in Fig. 5B; negative time delays
reflect diagonals shifted upward (ipsilateral earlier than contra-
lateral), and positive delays reflect diagonals shifted downward
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Fig. 5. Shared structure of representations across the hemispheres. (A) Interhemispheric representational similarity approach for assessing shared information across
the hemispheres. The 36 x 36 stimulus neural RDMs (an indexed by decoding accuracy) were correlated between the two hemispheres for every pair of time points using
split-half cross-validation. This resulted in time X time hemispheric correlation matrices. If there was no delay between the hemispheres, then the time generalization plots
would be symmetrical around the diagonal. (B) Plots show mean time x time correlations for representational structure in the contralateral and ipsilateral hemispheres
for the single peripheral (left) and dual peripheral (right) conditions. Plots are thresholded by points with evidence for cross-hemispheric correlations different from zero
(BF > 3). The highest correlations were observed for contralateral to ipsilateral delays in the peripheral conditions (i.e., below diagonal correlations). (C) Time of reliable
interhemispheric correlations. Histograms show the number of reliable (BF > 3) positive hemispheric correlation time points as a function of contralateral and ipsilateral
time. (D) Mean interhemispheric correlation values across participants for different ipsilateral-contralateral delays. Inset plot shows overlaid correlations as a function of
absolute hemispheric time delay, and the plot below shows BFs associated with the differences between positive and negative delays. Correlations were higher for the
positive contralateral earlier delays than the negative delays for the single peripheral but not the dual peripheral condition. RH, right hemisphere; LH, left hemisphere.
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(contralateral earlier than ipsilateral). In the single peripheral con-
dition, the mean correlation was reliably higher for positive “contra-
lateral earlier” than negative “ipsilateral earlier” offsets between 14
and 38 ms (BFs > 10). This provides support for an asymmetry in
hemispheric processing, with contralateral processing preceding ip-
silateral processing. The dual peripheral condition did not show a
reliable asymmetry (Fig. 5D). The same pattern of results is ob-
served when the analyses are restricted to the 24 object stimuli (see
the Supplementary Materials).

Consistency within and across hemispheres

Next, we assessed the consistency in the structure of information
within a hemisphere compared to information that is shared across
hemispheres, to quantify unique versus shared hemispheric informa-
tion. Within-hemisphere consistency was calculated as the correla-
tion between RDMs from odd and even trial sequences for a given
hemisphere. This correlation is a measure of reliability, which acts as
a noise ceiling, the maximal correlation that could be expected with
that hemisphere. Across-hemisphere consistency was calculated as
the correlation between RDMs from the left and right hemispheres
for odd and even trial sequences (as in Fig. 5). Mean within versus
across hemisphere consistency for the single peripheral condition is
shown in Fig. 6, collapsed across the left and right hemispheres to
assess information within the contralateral and ipsilateral hemi-
spheres relative to the shared information between them. Overall,
there were higher correlations within the contralateral hemisphere
than the shared (“across”) hemisphere correlations but no reliable

0.2 -

Correlation

differences between the ipsilateral consistency and the shared infor-
mation. Together, these results suggest that the contralateral hemi-
sphere contains unique information over and above that in the
ipsilateral hemisphere but that the information in the ipsilateral
hemisphere is a subset of that from the contralateral hemisphere.

Behavioral relevance of neural representations

Having established that the representations of visual stimuli vary ac-
cording to stimulus visual field and hemisphere and that these repre-
sentations are shared across hemispheres, we assessed their behavioral
relevance to give insight into the content of the neural representations.
We collated the perceptual dissimilarity of the 36 experimental stimu-
li obtained using online experiments. In each experiment, participants
were presented with three stimuli simultaneously and asked to choose
the odd-one-out according to two sets of instructions: “choose the one
that looks different” (image task) or “choose the one that is conceptu-
ally different” (concept task) (Fig. 7A). Stimulus dissimilarity was cal-
culated as the proportion of odd-one-out choices for pairs of stimuli
when they were presented together.

The behavioral results revealed that similarity judgments reflected
both object category and meaning. To assess how the stimuli were
clustered on the basis of similarity judgments per task, we correlated
the behavioral RDMs (Fig. 7C) with models based on image/word
category regardless of the object meaning (image model) and object
type (concept model) (Fig. 7B) using Spearman correlation. The im-
age model correlated with behavioral judgments in the image task
(r =0.81, P < 0.001) and the concept task (r = 0.28, P < 0.001). In
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Fig. 6. Consistency of information within versus across hemispheres. Correlations between representational structure within and across hemispheres show unique
information in the contralateral hemisphere above information that is shared with the ipsilateral hemisphere but no unique information in the ipsilateral hemisphere.
“Within” hemisphere consistency is calculated from a given hemisphere (contralateral/ipsilateral) using split-half Spearman correlation. “Across” hemisphere consistency
is calculated as the correlation between the left and right hemispheres (as in Fig. 5). Results are shown from the single peripheral condition.
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Fig. 7. Behavioral similarity tasks and results. (A) Behavioral task design. Three stimuli were presented simultaneously, and the task was to “choose the image that looks
different” (image task) or “choose the image that is conceptually different” (concept task). (B) Stimulus models constructed for the 36 stimuli based on whether stimuli
were images or words (left) or shared the same concepts (right). (C) Dissimilarity matrices based on the results from each behavioral task show relationships between the
stimuli based on image/word classification (left; image similarity task) and object type (right; concept similarity task). (D) Multidimensional scaling shows how stimuli
clustered in the behavioral data. For the image similarity task (left), words formed a separate cluster from the images. For the conceptual similarity task (right), words and

images of the same concept clustered together.

addition, the concept model which distinguished the six object cate-
gories (bird, fish, tree, boat, face, and tools), regardless of image/word
status, also correlated with behavior on the image task (r = 0.30,
P < 0.001) and the concept task (r=0.59, P < 0.001). The two behav-
ioral RDMs were significantly correlated (r = 0.61, P < 0.001; see the
Supplementary Materials for all model correlations). However, the

Robinson et al., Sci. Adv. 11, eadq0889 (2025) 1 January 2025

image model had a higher correlation with the image similarity task
than the concept similarity task (z = 20.96, P < 0.001), and the con-
cept model had a lower correlation with behavior on the image task
than the concept task (z=—9.68, P < 0.001). Thus, although both the
image and concept similarity tasks are correlated with both the image
and concept models and each other, there is a weighted asymmetry:

8of 15

G202 ‘20 Afenuer uo puesueang 10 A1SeAIUN Te BI08oUs 105 MMM//SANL WO | PaPe0 JUMOQ



SCIENCE ADVANCES | RESEARCH ARTICLE

Images and words were chosen as more dissimilar in the image
similarity task than the concept task because they look different
despite sharing meaning and were intermixed and more related to
the concept of the stimulus independent of perceptual format in
the concept task. This asymmetry can be seen in the multidimen-
sional visualization of the results, where in the image task, words
clustered separately to different image categories, but in the con-
ceptual task, words clustered with their associated objects (Fig. 7,
Cand D).

Using the behavioral models constructed from the two tasks, we
assessed the behavioral relevance of the representations evoked in
the contralateral and ipsilateral hemispheres. We used RSA to com-
pare the neural representations with behavioral models constructed
from the image-similarity and concept-similarity versions of the
odd-one-out task (Fig. 7C). The logic of these analyses is shown in
Fig. 8A; neural RDMs at each time point were correlated with the
image task RDM and the concept task RDM to result in a time-
varying neural-behavior correlation for each task. This correlation
was performed separately for the left and right hemispheres accord-
ing to whether the stimuli were contralateral or ipsilateral. Figure 8B
shows the mean neural-behavior correlations for contralateral and
ipsilateral conditions. We found that the behavior reflected neural
representations in the contralateral hemisphere (as indexed by
above-zero correlations), and the neural-behavior correlation was
higher for the image task than the concept task. In contrast, the
neural-behavior relationship was similar for the image and concept
tasks in the ipsilateral hemisphere, with greater statistical validity
for the concept task.

To complement the neural-behavior correlations, we performed
a commonality analysis. This analysis, similar to that in (31), as-
sessed how each behavioral model was associated with unique
variance in the neural data and the variance common to both mod-
els. Specifically, we performed linear regression on the neural
RDMs using the image and concept behavioral models as predic-
tors and compared it to linear regression models with each behav-
ioral model alone. The differences in R* between models revealed
the unique variance in the neural data that was related to the image
and concept models, as well as the variance common to both mod-
els (32). These calculations of commonality were compared to dis-
tributions calculated from 1000 repeats using random permutations
of the neural RDMs. Figure 8C shows the commonality estimates
in the contralateral and ipsilateral hemispheres. Time points with
commonality estimates that exceeded all permutations are marked
on the plot (P < 0.001). In both the contralateral and ipsilateral
hemispheres, there was robust unique variance associated with the
image model. The concept model was minimally but reliably re-
flected in the contralateral, but not ipsilateral, neural signal. Vari-
ance common to both models was notable in both hemispheres.
Crucially, the common variance accounted for a much larger pro-
portion of the total variance in the ipsilateral hemisphere than the
contralateral hemisphere. Together, these results indicate a funda-
mental difference in the types of information represented by the
contralateral and ipsilateral hemispheres. Specifically, this suggests
that information transfer from the contralateral to ipsilateral hemi-
sphere might prioritize information that reflects object meaning;
this likely includes certain visual features that are characteristic of
object concepts but not image statistics that are less relevant to ob-
ject identity.

Robinson et al., Sci. Adv. 11, eadq0889 (2025) 1 January 2025

DISCUSSION

In this study, we investigated the temporal dynamics of peripheral ob-
ject processing within the left and right hemispheres. Across two differ-
ent peripheral stimulus conditions, we found that image representations
traverse the hemispheres across multiple stages of processing. Stimulus
information was initially biased toward the contralateral hemisphere,
but subsequent stages of processing showed robust neural responses in
both hemispheres. Dynamics were different in the left and right hemi-
spheres, regardless of whether the images were contralateral or ipsilat-
eral. Specifically, the right hemisphere seemed to derive stimulus
representations with higher fidelity than the left hemisphere, indepen-
dent of visual field. RSA revealed that information is shared between
the contralateral and ipsilateral hemispheres with a delay around 15 to
30 ms. Last, we found evidence that representations in both hemi-
spheres correlate with behavior on stimulus similarity tasks. While the
contralateral hemisphere was more strongly correlated with image-
related judgments than concept-related judgments, the ipsilater-
al hemisphere showed little difference in behavioral relevance for the
two tasks. Together, these results suggest that hemispheric transfer pri-
oritizes object category information, which reflects both meaningful
image features and object meaning, over image statistics that are not
informative to meaning.

To our knowledge, this is the first study to assess representational
dynamics in the left and right hemispheres in humans. We provide
strong evidence of contralateral dominance of perceptual information
in the visual system. This adds to previous work documenting contra-
lateral dominance in the strength of neural activation (10-12) by
showing that the contralateral hemisphere also represents visual in-
formation with higher fidelity than the ipsilateral hemisphere. Specifi-
cally, we found stronger and earlier representations for contralateral
visual field relative to ipsilateral visual field stimuli. Yet, there were still
relevant representations for ipsilateral stimuli, indexed by above-
chance decoding, indicating that information was transferred from
the contralateral to ipsilateral hemispheres. This remained true even
for the dual peripheral condition: Each hemisphere contained infor-
mation about the two stimuli that were presented simultaneously, re-
gardless of whether they were in the contralateral or ipsilateral visual
field. Our task was irrelevant with respect to the visual stimuli, so the
sharing of information across hemispheres appears to be a fundamen-
tal feature of neural processing rather than a goal-driven process.

We found evidence for interference of information processing for
two simultaneously presented peripheral images. Specifically, there
was a reduction in information in the dual relative to single periph-
eral condition in both the contralateral and ipsilateral hemispheres
but only after initial stages of processing (later than 150 ms). Thus, the
first stages of processing seem to proceed unimpeded, likely within
early visual regions with strong retinotopic organization. Hemispher-
ic transfer then seems to affect subsequent processes within mid- to
high-level regions that code for objects and are less retinotopic. Previ-
ous EEG-functional magnetic resonance imaging work showed that
high-level extrastriate regions respond to stimuli from both visual
fields, whereas low-level extrastriate regions respond primarily to the
contralateral hemifield (33). We found that the difference in decoding
between the single and dual image conditions was more robust in the
ipsilateral hemisphere, which points to these later, high level process-
es being more subject to interference. It should be noted that the si-
multaneous stimuli in the current study were presented in
symmetrical positions relative to the vertical midline, and it could be
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Fig. 8. Neural-behavior relationship for image and concept tasks. (A) Explanation of how neural-behavior correlations were calculated. For each hemisphere and vi-
sual field condition, the neural dissimilarities across all 36 images were correlated with the behavioral dissimilarities for the image task and the concept task, separately
for each neural time point following image onset. The mean was subsequently calculated for the contralateral and ipsilateral conditions per behavioral task (example re-
sults plot shown). (B) Neural-behavior correlations across time for contralateral (left) and ipsilateral (right) stimulus presentations, collapsed across the left and right
hemispheres. Behavior from the image and concept tasks was reliably reflected in the neural signal in both hemispheres, although with less fidelity in the ipsilateral
hemisphere particularly for the image task. Results are shown from the single peripheral condition. (C) Commonality analyses. Variance in the neural data from the con-
tralateral and ipsilateral hemispheres that was explained by the image task and concept task models and variance common to the two models. Colored dots above plots
reflect time points of significant variance explained (P < 0.001).
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that interference is particularly sensitive to this configuration. Never-
theless, the timing of the interference effects highlights some possi-
bilities about the nature of different processing stages, namely
regarding temporal multiplexing. A growing body of literature has
revealed that multiple rapidly presented images are represented si-
multaneously in the brain (34-36), yet the temporal resolution of
processing decreases from low-level to higher-level regions in the vi-
sual hierarchy (37, 38). In the context of peripheral image processing,
a possibility is that early retinotopic brain regions quickly and process
input from the contralateral hemifield serially and then transfer in-
formation to higher regions within both hemispheres. These succes-
sive brain regions have longer temporal integration windows, which
could plausibly lead to interference between different stimuli (e.g.,
masking) but would also enable integration when stimuli presented
temporally or spatially adjacent are contextually related.

EEG is not known for its high spatial resolution, but we imple-
mented several strategies to ensure that the analyses were assessing
distinct information from each hemisphere. First, we used clusters
of electrodes that were spatially distinct, over the left and right oc-
cipitotemporal regions. Electrodes in these regions have previously
been used to document hemispheric differences for face and word
perception (39-41). Second, we performed a Laplacian transforma-
tion on the neural responses to highlight local patterns of activity,
enhancing the spatial resolution of the signals (42). The results indi-
cate that there were distinct sources per hemisphere. The sensor
searchlight analyses depict clear contralateral sources of informa-
tion, with weaker ipsilateral clusters at later time points (see the
Supplementary Materials). Last, our time resolved decoding results
show that the dynamics look distinct in the two hemispheres (e.g.,
with a later peak for ipsilateral stimuli). If there was only one neural
source of information, then we would expect an overall reduction
for ipsilateral responses without a change in the timing.

In addition to varying dynamics for contralateral versus ipsilat-
eral representations, the results of this study highlight differences
between the left and right hemispheres of the brain. In particular, the
left and right hemispheres seem to retain hemispheric-specific dy-
namics regardless of whether they are contralateral or ipsilateral,
which is evidence that each hemisphere is specialized for certain
types of information, and processing is distributed for these different
processes. Furthermore, there was a consistent trend in which the
right hemisphere had stronger representations than the left. Given
the types of stimuli used in the current study, one could surmise that
the hemispheric differences we observe are driven by the categories
of words, which tend to be lateralized to the left hemisphere (43),
and faces, which are lateralized to the right hemisphere (44). How-
ever, we found that even when excluding faces and words from the
analysis (objects only), there was still a right hemispheric dominance
in the strength of decoding. For faces and words separately, decoding
was also numerically stronger in the right hemisphere than the left
hemisphere, but this was not statistically reliable, possibly due to
fewer images in each category leading to lower power (see the Sup-
plementary Materials). Together, this hints toward more general
hemispheric processing differences, potentially centered around bi-
ases for specific visual features. It has been postulated that the two
hemispheres contain distinct subsystems for abstract and specific
visual object recognition (45, 46), with the right hemisphere more
effective for specific exemplar recognition, so one possibility is that
the focus on stimulus information in the current study inadvertently
biased toward a right hemispheric advantage. However, it should be
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noted that the hemispheric neural-behavioral analyses showed
stronger correlations for the image task in the right hemisphere, but
there was no left advantage for the concept task, a task that likely
required a more abstract recognition strategy.

Despite hemispheric differences, there was evidence of clear repre-
sentational overlap between the hemispheres. Our results show that
the ipsilateral hemisphere represents stimulus information similarly
but after a delay relative to the contralateral stimulus. Our estimates of
the delay were on the order of 15 to 30 ms. This again points to clear
evidence of information transfer from one hemisphere to the other.
More support for this transfer delay is evident from the delay of de-
coding onset for ipsilateral relative to contralateral stimuli (see Table
1). Beyond the timing differences, the similarity in the structure of
stimulus representations between the hemispheres contralateral and
ipsilateral to the experimental stimuli suggests an element of redun-
dancy in the system. The ipsilateral hemisphere receives peripheral
visual information indirectly, via the contralateral hemisphere, so
shared or redundant information does not come as a surprise. Yet, this
indirect transfer does not preclude different processes being carried
out on inputs to the contralateral and ipsilateral hemispheres. We
found that the information within the hemisphere ipsilateral to the
stimulus did not contain any unique information relative to the con-
tralateral hemisphere, but rather the information was largely dupli-
cated throughout the time course of processing. However, the specific
information that was transferred to the ipsilateral hemisphere was
only a subset of that represented within the contralateral hemisphere.
This raises the possibility that hemispheric transfer operates as a filter-
ing mechanism, modulating neural activity to focus the most impor-
tant types of information. Evidence suggests that cross-hemispheric
neurons are mainly excitatory, but they target both excitatory and in-
hibitory neurons (47), which seems a plausible route for information
pruning. So, despite the apparent redundancy across the hemispheres,
perhaps the ipsilateral hemisphere plays an important role in being
able to process only the most relevant information.

Our analyses into the behavioral relevance of the neural repre-
sentations support this “filtering via hemispheric transfer” theory.
The contralateral hemisphere was biased toward perceptual over
conceptual judgments, with behavioral responses on the image task
correlating more strongly with the neural signal than responses on
the concept task. Yet, in the ipsilateral hemisphere, there was little
difference between the behavioral relevance for perceptual and con-
ceptual judgments. Behavioral responses in the image task and the
concept task, while separable, were highly correlated, so we would
not expect them to necessarily dissociate. The commonality analysis
revealed reliable variance common to the two behavioral models in
both the contralateral and ipsilateral hemispheres. We suggest that
this common variance reflects judgments that are similar between
the two tasks, which seem to be object-category focused. In con-
trast, the types of information that were lost to hemispheric transfer
mainly related to perceptual judgments, likely related to image sta-
tistics. These findings indicate that hemispheric transfer might pri-
oritize information relating to object identity; this includes object
meaning as well as image features that are characteristic of object
identity (e.g., trees tend to be green).

There are still many open questions about the nature of hemi-
spheric functioning and hemispheric transfer. Here, we only tested
stimuli with a fixed eccentricity along the horizontal meridian, but
hemispheric processing might vary with the location and eccentric-
ity of stimuli in the visual field; for example, increasing eccentricity
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might increase the hemispheric delay. Testing stimuli in various lo-
cations across the visual field might give clues into the timing and
content of perceptual processing within each hemisphere. It would
also be interesting to probe the degree to which semantic informa-
tion is extracted from peripheral stimuli in such paradigms and its
representation in each hemisphere. Relatedly, investigating seman-
tics might help disentangle the specific types of information that are
prioritized for transfer across the hemispheres, for example, using
tasks that dissociate information about image features from those
of conceptual content. The current study did not focus on semantic
integration, but the current paradigm could also be used to assess
how the brain extracts perceptual and semantic information in natu-
ralistic scenes, particularly in the case of congruent or incongruent
information across the hemifields. Overall, we think that this is a
promising line of research with exciting possibilities in investigat-
ing how the left and right hemispheres of the brain work together
for perception.

MATERIALS AND METHODS

Participants

Participants were 20 adults recruited from the University of Sydney
(15 females; median age, 22 years) in return for payment or course
credit. This sample size is similar to previous work on contralateral
visual responses (18) and the temporal dynamics of visual processing
(34, 36). The study was approved by the University of Sydney ethics
committee (approval #2016/849), and informed consent was ob-
tained from all participants. Edinburgh handedness scores indicated
that 17 participants were right-handed, 1 was left-handed, and 2 were
ambidextrous. The same trend in results was seen if only right-
handed individuals were analyzed (see the Supplementary Materials).
All participants reported normal or corrected-to-normal vision.

Stimuli and design

Participants viewed images that appeared centrally or to the left or
right of fixation on a 1920 X 1080 resolution ASUS VG236 monitor,
while their neural activity was measured with EEG. There were 36
stimuli: four different image exemplars of six basic objects: fish, bird,
face, boat, tree, and tool; and word labels for the same six objects in
lower- and uppercase letters (Fig. 1A). Half the trials were words,
and half were objects. Stimuli were presented at approximately
3.24° X 3.24° of visual angle and at an eccentricity of 3.24° to the
center of the object. All stimuli were presented using PsychoPy (48).
We intended to present the words in italics as well as original type-
face, but an unforeseen issue with the PsychoPy presentation meant
that the italics were not applied, so each specific word stimulus was
presented double the number of times compared with each object
(but only half of these were analyzed; see below).

There were three types of experimental sequences: central, single
peripheral, and dual peripheral (Fig. 1B). These sequences were in-
terleaved throughout the experimental session. Here, we focus only
on the peripheral and dual peripheral sequences as these inputs are
projected to a single hemisphere in a bottom-up fashion. In each
sequence, there were 192 trials. Each trial was presented for 100 ms
with a gap of 100 ms between trials (5-Hz presentation). In the sin-
gle peripheral condition, stimuli were presented half to the left and
half to the right of fixation equiprobably and in random order, with
only one stimulus presented at a time. Each sequence consisted of
four repeats per object stimulus (two on the left and two on the

Robinson et al., Sci. Adv. 11, eadq0889 (2025) 1 January 2025

right) and eight repeats per word stimulus (four left; four right). In
the dual peripheral condition, every trial consisted of one stimulus
to the LVF and one to the RVF simultaneously. There were 96 im-
ages and 96 words on each side in random combinations. Within
each sequence, trials were presented in random order.

Across the experiment, there were 24 single peripheral and 12
dual peripheral sequences, which, in total, contained the same num-
ber of stimulus repeats per visual field. In sum, there were 48 repeats
of each of the 24 image stimuli and 96 repeats of each of the 12 word
stimuli in each hemifield for each condition. To maintain equal trial
numbers per class, only 48 repeats for the word stimuli were ana-
lyzed, randomly selected.

During the experimental session, participants were asked to
monitor the three dots (central fixation, left, and right) marking the
possible stimulus locations and detect when one turned red (Fig.
1B) and indicate detection by button press. Participants were asked
to maintain fixation on the central dot. This task was designed to be
orthogonal and irrelevant to the stimuli. The fast stimulus presenta-
tion, random image sequences, and the orthogonal task reduced the
likelihood of participants moving their eyes in a stimulus-specific
manner. Yet, the task ensured that participants maintained attention
across the whole visual field throughout the experiment, regardless
of stimulus presentation condition.

EEG recording and preprocessing

EEG data were continuously recorded from 64 electrodes arranged
in the international 10-20 system for electrode placement (49) using
a BrainProducts ActiChamp system, digitized at a 1000-Hz sample
rate. Scalp electrodes were referenced to Cz during recording. The
EEGLAB toolbox (50) was used to preprocess the data offline. First,
we interpolated electrodes that exceed 5 SDs of kurtosis, and then a
common average reference was applied. We filtered the data using a
Hamming windowed sinc finite impulse response (FIR) filter with
highpass of 0.1 Hz and lowpass of 100 Hz as in our previous work
(34, 36). Downsampling was not applied, so the temporal resolution
of the data was 1 ms. Epochs were created for each stimulus presen-
tation ranging from —100 to 800 ms relative to stimulus onset. Last,
we used the current source density (CSD) toolbox (51) to perform a
Laplacian transformation (42) which calculates the second spatial
derivative of the scalp potentials. This transformation enhances the
spatial resolution of the EEG signal at the scalp, in our case ensuring
greater distinction between left and right hemispheric responses.

Neural decoding

To investigate the neural representations of lateralized stimuli in the
two hemispheres, we used MVPA to assess stimulus-specific repre-
sentations per hemifield (left/right), hemisphere (left/right), and
presentation condition (single/dual peripheral). Given that EEG re-
sponses are typically stronger for contralateral stimuli (12), we ex-
pected that stimuli would also be represented with higher fidelity in
the contralateral hemisphere than the ipsilateral hemisphere and
potentially represented with different dynamics. Further, we were
interested in how conflicting information to the hemispheres (as in
the dual peripheral condition) influenced the neural representations
relative to the single peripheral condition.

EEG data were analyzed using time-resolved classification meth-
ods and implemented using the CoOSMoMVPA toolbox (52). Decod-
ing was performed separately for the left and right hemispheres using
clusters of six occipito-temporal electrodes (Fig. 1C). The electrodes
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chosen were O1, PO3, PO7, P3, P5, and P7 for the left cluster and O2,
PO4, POS, P4, P6, and P8 for the right cluster. These clusters encom-
pass similar electrodes to previous work investigating lateralized re-
sponses (39-41) but containing sufficient electrodes to allow for
pattern analysis. The trend in decoding across conditions did not ap-
pear dependent on the specific electrodes chosen; see the Supple-
mentary Materials for decoding with larger clusters encompassing
more anterior electrodes. Decoding was performed separately for
each participant, for each presentation condition (single/dual X left/
right hemifield), and for each single time point in the epoch (1-ms
time resolution). Data were pooled across the six EEG sensors in each
cluster, and we tested the ability of a linear discriminant analysis clas-
sifier to discriminate between the patterns of neural responses associ-
ated with each stimulus. A 12-fold cross-validation procedure was
used, with each fold containing independent trial sequences. All pairs
of combinations for the 36 stimuli (e.g., facel versus tree2 and word-
tooll versus fish4) were decoded, resulting in 630 unique contrasts
across time per condition per participant. Classifier accuracy was cal-
culated as the proportion of correct classifier predictions across all
folds, and the group mean was calculated per condition. All decoding
contrasts were pairwise, so chance performance was 0.5. Accuracy of
classifier predictions reflected the information in the neural signal,
where above-chance classification accuracy (>0.5) indicated that the
hemisphere contained information about the stimuli.

Behavioral similarity task

We were also interested in how the neural responses within each
hemisphere related to behavioral judgments for the same stimuli. In
two online experiments (53), conducted independently of the EEG
acquisition, new groups of participants rated the similarity between
the experimental stimuli using a triplet odd-one-out task (54, 55)
with the 36 experimental stimuli.

Participants were undergraduate students from the University of
Sydney who participated in return for course credit. The experi-
ments were programmed in jsPsych (56) and hosted on Pavlovia
(48). In each experiment, there was a separate set of instructions:
choose the one that looks different (N = 21) or choose the one that
is conceptually different (N = 21). On each trial, three experimental
stimuli were presented simultaneously, and participants were asked
to choose the odd one out by clicking on the stimulus (Fig. 2A).
There were 400 trials in the experiment, and stimulus combinations
were randomly chosen.

Behavioral responses were used to construct RDMs for each task.
For each trial, we calculated dissimilarity across the pairs of stimuli
(three pairs for the three distinct stimuli). The chosen odd-one-out
stimulus was coded as dissimilar from each of the other two stimuli
(value of 1), and the two other stimuli were coded as similar (value
of 0). Across all trials of all participants, the dissimilarity of each
stimulus pair (e.g., facel versus word-tree2) was calculated as the
mean response for all trials in which those two stimuli were pre-
sented together, a measure of their relative similarity to each other
compared with the other stimuli in the set.

Representational similarity analyses

To investigate the relationship in the structure of stimulus representa-
tions between the two hemispheres, we used RSA (30). RSA allowed
a comparison between hemispheres which was abstracted away from
specific neural activity patterns and rather focused on the relation-
ships between stimulus representations. In this case, RSA allowed
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hemispheric-specific representations to be compared with represen-
tations of the other hemisphere in the single and dual peripheral con-
ditions. In a subsequent set of analyses, we used RSA to compare
representations within each hemisphere with behavioral judgments,
to assess the content of information within each hemisphere.

Using the neural and behavioral results, we constructed RDMs,
which quantified the similarity between each stimulus (e.g., Fig.
5A). Each of these RDM models was a 36 X 36 matrix of dissimilar-
ity for each of the 36 stimuli with each other stimulus, using the
relevant neural or behavioral measure. The RDMs were symmetrical
across the diagonal, with 630 unique values. Neural RDMs used de-
coding accuracy for each pair of stimuli at each time point (1-ms
temporal resolution). Separate 36 X 36 stimulus RDMs were con-
structed for each hemisphere, time point, and participant, where
each cell contained the mean decoding accuracy between two stim-
uli. The behavioral RDMs were based on the group mean dissimilar-
ity scores from the two behavioral experiments. We also constructed
two additional stimulus models based on the stimulus category
(image/word) and concept (e.g., tree, tool, and face).

Using RSA, we investigated how representations varied across
the hemispheres. First, we correlated the left and right hemisphere
RDMs using Spearman correlation to assess similarity of the lower
diagonals of the RDMs (i.e., the unique pairwise values), for every
pair of time points. This allowed us to assess how representations
were similar across the hemispheres, and whether this similarity was
dependent on transfer delays. Last, we correlated the neural models
across time with each behavioral model to assess how neural infor-
mation might inform overall perception. Correlations were per-
formed for each EEG participant separately, and the mean was
calculated across the group.

For any analyses comparing hemispheres, we used a split-half
comparison method to reduce spurious correlations due to corre-
lated noise. Specifically, we constructed two RDMs per condition,
based on odd or even sequences (i.e., using sixfold cross-validation
to decode stimulus pairs). We then assessed similarity in neural
RDMs across hemispheres by using different sequences; for exam-
ple, comparing the left hemisphere RDM from odd sequences with
the right hemisphere RDM from even sequences and vice versa and
then taking the mean.

Statistical testing

To assess neural representations within the hemispheres, we used
Bayesian statistics to determine the evidence for the alternative relative
to the null hypotheses (57-61). For decoding analyses, the alternative
hypothesis of above-chance (50%) decoding was tested. For correla-
tion analyses, the alternative hypotheses of above- and below-zero
correlations were tested. We used the “BayesFactor” package in R (62).
BFs were calculated using a Jeffreys-Zellner-Siow (JZS) prior, centered
around chance decoding of 50% (60) with a default scale factor of
0.707, meaning that for the alternative hypotheses of above- and be-
low- chance decoding, we expected to see 50% of parameter values
falling within —0.707 and 0.707 SDs from chance (59, 60, 63, 64). A
null interval was specified as a range of effect sizes between —0.5
and 0.5 (65).

A BF is the probability of the data under the alternative hypoth-
esis relative to the null hypothesis. We consider BF > 3 as evidence
for the alternative hypothesis (above-chance decoding and reliable
correlations). To calculate the onset of effects, we used a conserva-
tive estimate of the first time that there was sustained evidence for
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10 ms (10 consecutive time points with BF > 10). We interpreted

BF < 1/3 as evidence in favor of the null hypothesis (59, 66).
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