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1.  INTRODUCTION

Prediction plays a fundamental role in facilitating efficient 
and accurate visual perception (Bar, 2009; Rao & Ballard, 
1999; Summerfield & Egner, 2009). Predictive coding 
models assert that during perception, bottom-up sensory 
input is compared with top-down predictions at multiple 
processing levels in the brain (Millidge et  al., 2021; 
Summerfield & Egner, 2009). These comparisons are 
used to generate internal representations of stimuli which 
vary in their precision as a function of the comparative 
strength of, and agreement between, expectations and 
input (Millidge et al., 2021). Specifically, higher level brain 

areas such as the prefrontal and parietal cortices are 
thought to generate perceptual predictions, and these 
predictions are passed to lower-level sensory areas. 
These lower-level areas in turn generate prediction errors 
which are passed to higher levels and are used to refine 
stored models of the world. This effectively reduces infor-
mation processing load since neural representations are 
only updated when new inputs deviate from what is pre-
dicted (Summerfield & Egner, 2009).

While predictive coding models have been influential in 
human vision science (Kok & de Lange, 2015), a number 
of key hypotheses arising from them remain untested. 
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Specifically, although predictions have been shown to 
influence the encoding of low-level visual features, such 
as orientation and motion (Ekman et al., 2017; Hogendoorn 
& Burkitt, 2018; Tang et al., 2018), it is not known whether 
a similar influence arises for more complex visual stimuli 
which involve higher-order processes encompassing 
feature integration and extraction of meaning. To address 
this gap, here we recorded electroencephalography 
(EEG) while participants viewed statistically structured 
sequences of images depicting familiar real-world objects, 
and applied multivariate pattern analyses (MVPA) to 
determine whether predictability modulates how such 
objects are represented in the brain and whether pre-
dictions help resolve ambiguous perceptual input.

A key tenet of the predictive coding theory is that stim-
uli should be predictively encoded across multiple levels 
of the visual processing hierarchy (Kok & de Lange, 2015; 
Millidge et al., 2021). Previous studies in human observ-
ers and in animal models have shown that for elementary 
visual features such as orientation, unexpected stimuli 
yield enhanced representations relative to expected or 
random stimuli (Smout et  al., 2019; Tang et  al., 2018, 
2023). However, it is unclear whether similar low-level 
predictive effects hold for complex, real-world stimuli 
which possess high-level semantic features. The poten-
tial role of predictive coding in modulating neural repre-
sentations of higher-level visual stimuli has not been 
widely investigated. Using functional magnetic reso-
nance imaging (fMRI) in human participants, Richter et al. 
(2018) found that neural responses to expected complex 
object stimuli were suppressed relative to those elicited 
by unexpected stimuli, across both early visual and 
higher-level ventral stream areas. Conversely, den Ouden 
et al. (2023) found no differences in face-evoked event-
related potentials (ERPs) for expected versus unexpected 
stimuli. In a study of neuronal responses in the macaque 
inferior temporal cortex, Kaposvari et  al. (2018) found 
that activity was enhanced for object stimuli that violated 
expectations relative to those that were expected.

Critically, most previous studies of visual prediction 
effects have compared differences in response magni-
tude for expected and unexpected stimuli, an approach 
which ignores potentially important stimulus-specific 
information contained within neural signals. More specif-
ically, attenuation of signal-encoding for expected stimuli 
could plausibly result from either an overall lowering of 
stimulus-relevant activation, or from preserved stimulus-
relevant activation coupled with a reduction in sensory 
noise (Feuerriegel et al., 2021). In line with the predictive 
coding theory, larger evoked responses to unexpected 

stimuli should reflect the additive effects of stimulus-
relevant signals and prediction error (Summerfield & 
Egner, 2009). Conversely, elevated responses to unex-
pected stimuli may be unrelated to content-specific pre-
dictions, but might instead reflect the presence of surprise 
(see Feuerriegel et al., 2021). It is therefore important to 
quantify the information carried by neural signals gener-
ated in response to unexpected versus expected stimuli 
in order to further understanding of how predictive rela-
tionships affect visual perception.

The predictive coding theory also makes explicit 
assertions about how predictions modulate the encoding 
of sensory input. Specifically, top-down predictive signals 
are expected to constrain the interpretation of bottom-up 
visual input, thereby facilitating efficient (and accurate) 
interpretation of potentially degraded bottom-up sensory 
input (Bar, 2004; Summerfield & Egner, 2009). In other 
words, perceptual predictions should improve the pre-
cision with which degraded visual stimuli are encoded 
(Esterman & Yantis, 2010). Previous behavioural work has 
demonstrated that contextual and associative expecta-
tions facilitate recognition of visual stimuli (Esterman & 
Yantis, 2010; Joubert et al., 2007; Oliva & Torralba, 2007; 
Puri & Wojciulik, 2008), but little work has been undertaken 
to clarify the neural mechanisms underlying this effect.

Here, we addressed this issue by investigating how 
perceptual predictions modulate the neural encoding of 
both high-fidelity and perceptually degraded stimuli. We 
degraded our stimuli by applying diffeomorphic warping 
to a subset of the object images (for details, see Stojanoski 
& Cusack, 2013). Diffeomorphic degradation is designed 
to reduce identifying information while preserving low-
level image characteristics, and has been shown to dis-
rupt object recognition in human observers (Stojanoski & 
Cusack, 2013). We used diffeomorphic degradation to 
reduce the representational fidelity of object images, and 
asked whether object identification and associated neural 
activity are differentially affected when such degraded 
stimuli are expected versus unexpected.

Multivariate decoding analyses applied to time-
resolved neuroimaging data provide an ideal method for 
evaluating these questions as they enable quantification 
of information encoded in the brain across time (T.A. 
Carlson et  al., 2020; Oosterhof et  al., 2016). Temporal 
multivariate pattern analysis (MVPA) is able to identify 
complex, multivariate relationships in patterns of activation 
across brain areas, and can be used to associate these 
variables with the information they represent (Mouchetant- 
Rostaing et  al., 2000; Oosterhof et  al., 2016). Here, we 
used multivariate decoding to quantify differences in the 
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neural representations of complex object stimuli when 
these appeared in expected, unexpected, and random 
conditions. Our aim was to determine whether predictive 
information modulates the representation of both high-
fidelity and degraded object images. We recorded partic-
ipants’ brain activity using EEG as they viewed sequences 
of images depicting familiar real-world objects, and used 
MVPA to quantify whether, and to what extent, neural rep-
resentations of identical objects are modulated by whether 
they are expected, unexpected or appear in the absence 
of any predictive structure.

2.  METHODS

2.1.  Participants

Thirty participants (24 female, 2 left-handed, average 
age = 24.6 years, range = 20-52 years) were recruited from 
The University of Queensland and were compensated for 
their time at a rate of AUD 20 per hour. All included partic-
ipants reported normal or corrected-to-normal vision and 
provided informed consent in writing. The study procedure 
was approved by The University of Queensland Human 
Research Ethics committee (HREA 2016001247).

2.2.  Paradigm

The study aimed to characterise neural representations 
of high-fidelity and degraded visual images of real-
world objects that appeared at expected or unexpected 
positions within rapid serial visual presentation (RSVP) 
sequences at fixation. The stimulus images consisted 
of 16 objects obtained from www​.pngimg​.com. These 
images have been used in previous RSVP object-identity 
decoding paradigms, and are reliably decodable from 
EEG data (Grootswagers et  al., 2019). Perceptual 
expectations were generated by introducing a reliable 
statistical structure to the order in which stimuli were 
presented. Specifically, image sequences were structured 
such that four pre-target images predicted the identity 
of a subsequent target stimulus with 80% accuracy. 
The same pre-target/target image pairs (defined in 
Fig. 1) were used for all participants. These target stim-
uli could be either high-fidelity or degraded. Degraded 
stimuli were constructed through diffeomorphic warp-
ing. This manipulation iteratively applies a flow field 
generated from cosine components with random phase 
and amplitude, leading to an equal probability of each 
pixel being expanded or contracted. The degraded 
stimuli were generated by applying seven sequential 

warps to images with a maximum possible distortion 
value of 20 (Stojanoski & Cusack, 2013).

RSVP streams were shown to participants in three dis-
tinct block types: Random, Exposure, and Testing (Fig. 2), 
as described below.

2.2.1.  Random block

The purpose of the Random block was to estimate robust 
neural representations for each object where no predic-
tive information was present. In the Random Block, all 32 
stimuli (both degraded and high-fidelity) were presented 
in random order with no statistical structure (8 sequences, 
~40 exposures per unique stimulus images: high-fidelity 
or degraded).

Fig. 1.  Visual stimuli used in the study. (A) High-fidelity 
images. (B) Degraded stimuli created through diffeomorphic 
warping. (C) Pre-target objects and their associated 
expected target stimuli. The same Pre-Target/Target pairs 
were used for all participants.

http://www.pngimg.com
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2.2.2.  Exposure block

The purpose of the Exposure block was to expose partic-
ipants to the predictive statistical structure within the 
RSVP streams. This exposure was intended to give 
participants an opportunity to passively learn (either 
explicitly or implicitly) stimulus associations prior to test-
ing whether violating this structure modulated neural 
responses. In this block, high-fidelity stimuli were pre-
sented, and the predictive statistical structure was added 
(20 sequences, ~200 exposures per stimulus). The Expo-
sure Block included an average of 200 exposures of each 
pre-target/target image pair, with 80% of pre-target 
images being followed by the “expected” stimulus and 
the remaining 20% being followed by an “unexpected 
stimulus” (see Fig. 1C). In the Exposure and subsequent 
Testing blocks, target stimuli were never presented in 
cases where they were not preceded by the appropriate 
pre-target stimulus (defined in Fig. 1). Unexpected stimuli 
were defined as any stimulus which appeared in a posi-
tion in which a specific target was expected (see Fig. 2). 
Defined pre-target and target stimuli were never pre-
sented in unexpected positions.

Participants were not explicitly told of the predictive 
relationship between the pre-target/target pairs. Each 
predictive pair was presented 5-10 times per sequence. 
Data from the Exposure Block were used to passively 
expose participants to the used statistical structure only, 
and were not used to train or test decoding models. EEG 
data were recorded during the Exposure Block, but this 
was not used in any decoding analyses.

2.2.3.  Testing block

The purpose of the Testing Block was to generate the 
data needed to evaluate whether predicted versus 
unpredicted targets yielded different neural decoding 
accuracies relative to the same stimuli presented ran-
domly (i.e., in which there was no predictive cue to the 
targets’ occurrence). The Testing Block included 45 
RSVP sequences (~450 exposures per predictive pair). 
Both degraded and high-fidelity stimuli were presented 
within the Testing Block. In this block, 40% of pre-
target images were followed by the high-fidelity 
expected stimulus, 40% were followed by the degraded 
version of the expected stimulus, and 20% were fol-
lowed by an unexpected object (objects never pre-
dicted). Testing Block images were classed as either 
(1) “expected,” in which the target stimuli were consis-
tent with the identity predicted by the preceding pre-
target stimulus; (2) “unexpected,” where the target 
stimuli were inconsistent with the identity predicted by 
the pre-target; or (3) random, in which there was no 
predictive information carried by the preceding image. 
These designations were assigned to both the high-
fidelity and degraded stimuli.

Participants were instructed to monitor the RSVP 
sequences and perform an orthogonal task in which they 
reported the number of attention probes (red stars) pres-
ent in each sequence. The goal of the attention task was 
to ensure participants maintained attention on the stimu-
lus streams without the requirement to perform explicit 
object identification (Grootswagers et al., 2019). Stimuli 

Fig. 2.  Examples of RSVP sequences included in each block type. Random Blocks contained all stimuli in random 
order. Exposure Blocks contained high-fidelity stimuli only and served to expose participants to the predictive 
structure of the RSVP sequences. Testing Blocks contained both high-fidelity and degraded stimuli in the described 
predictive structure. When a randomly presented (i.e., unpredictable) stimulus is presented following a pre-target 
stimulus, this random stimulus is classed as unexpected. Type denotes stimulus category, and ms refers to exposure 
time (in milliseconds).
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were presented at a rate of 5 Hz (100 ms exposure with 
100 ms blank interstimulus intervals). Participants viewed 
73 RSVP sequences, each containing 160 object stimuli 
and 1-4 attention probes. Attention probes were pseudo-
randomly distributed with the constraint that they could 
not appear within the first or last 10 images, and that a 
minimum of 10 images were shown between each atten-
tion probe. Sequences were also constructed such that 
no image was immediately repeated. At the end of each 
stream, participants were prompted to report how many 
attention probes they had seen using numbered keys 
(1-4), and were provided feedback on their accuracy.

The full paradigm lasted approximately 60  minutes, 
and participants were encouraged to take short rest 
breaks between sequences. Following the main experi-
ment, participants completed a debrief questionnaire, the 
aim of which was to assess whether they were aware of 
the statistical structure embedded within the relevant 
blocks. Participants were first asked to report whether 
they “noticed anything about the images.” Next, they 
were asked to freely report whether they “noticed any 
patterns within the images.” Following these free 
response questions, participants were informed that the 
presented sequences contained some images which pre-
dicted the identity of the subsequent image, and were 
given multiple-choice questions to assess whether they 
were able to identify the pre-target and target images. 
Following this, participants were shown each of the four 
pre-target images in turn and asked to indicate its asso-
ciated target image, guessing if necessary.

2.3.  EEG recordings and pre-processing

Continuous EEG data were recorded using a BioSemi 
system and digitized at a sampling rate of 1024 Hz. The 
64 electrodes were arranged according to the interna-
tional standard 10–10 system for electrode placement 
(Oostenveld & Praamstra, 2001). Recorded data were 
pre-processed using EEGLAB functions (Delorme & 
Makeig, 2004). Specifically, raw EEG data were re-
referenced to mastoid channels and were filtered using 
high pass (0.1 Hz) and low pass (100 Hz) frequency filters. 
Noisy electrode channels were identified using joint prob-
ability, and channels were rejected if they exceeded 5 
standard deviations from the average (mean number 
interpolated = 1.07 electrodes, SD = 1.89, range = 0-6). 
These channels were reconstructed using spherical 
interpolation. EEG data were then down-sampled to 
256 Hz, divided into stimulus presentation-locked epochs 
including the time interval from [-100 ms to +1000 ms] 

from stimulus presentation, and baseline corrected. No 
other pre-processing or data cleaning was performed.

2.4.  Decoding analysis

EEG data were analysed using a multivariate pattern 
analysis (MVPA) decoding pipeline (Grootswagers et al., 
2017; Oosterhof et al., 2016) involving regularised linear 
discriminant analysis (LDA) based classifiers. Importantly, 
this method quantifies the discriminability of images from 
the neural signal, essentially measuring the degree of 
information carried by neural signals rather than simply 
detecting differences in signal magnitude. Decoding 
analyses were preformed based on raw EEG voltages 
across all scalp electrodes. Decoding was preformed for 
each timepoint independently, and additional temporal 
data were not considered in analysis. Decoding analyses 
were implemented using CoSMoMVPA (Oosterhof et al., 
2016) in MATLAB. All decoding analyses were performed 
at the participant level, but overall results were analysed 
at the group-level.

For each participant, pair-wise decoding was con-
ducted across all object pairs present in the condition of 
interest. For each pair of objects (objects A and B), 
decoding classifiers only considered data from epochs in 
which object A or B was presented. Classifiers were 
trained to distinguish image A from image B based on 
80% (randomly selected) of the included epochs, and the 
accuracy of this model was assessed by calculating the 
model’s percent correct when used to distinguish 
between A and B in the remaining randomly selected 
20% of relevant epochs. If classifiers are unable to reli-
ably distinguish between A and B in the testing dataset, 
model accuracy will be at chance (50%). This process is 
repeated five times for each pair, with accuracy being the 
average percent correct classifications within the testing 
data. This process is repeated independently across 
each timepoint for each of the included object pairs. 
Overall decoding accuracy for each condition is the aver-
age accuracy of classifiers across all considered object 
pairs in a single participant. This accuracy data is aver-
aged at a group-level to yeild final decoding accuracy 
values.

In each analysis, all pairwise combinations of images 
which were presented in the relevant condition (i.e., cow 
versus shirt, cow versus duck, etc.) were decoded. The 
exact number and identity of object pairs in each analysis 
is determined by the condition being considered. For 
example, the four potentially expected objects were 
considered in analyses aiming to decode expected 
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objects while only the eight potentially unexpected objects 
were included in analyses decoding unexpected objects 
(see Figs.  1 and 2). Each decoding analysis involved 
training classifiers on images presented in the indepen-
dent Random Blocks, in which there was no statistical 
structure in the ordering of images and testing the classi-
fier model on the same images from specific conditions 
of interest in the Testing Block. These models formed the 
basis for comparing object representations across all 
conditions. For assessing representations in the random 
condition, the models were tested on the remaining 
epochs of the same condition per iteration (20%). In 
cases where models were trained and tested on different 
stimulus types (e.g., trained on high-fidelity images, 
tested on degraded images) or different conditions (e.g., 
trained on random, tested on the predicted), the identical 
epochs and classification schemes were used to train the 
classifier, but models were tested on data from another 
condition. For example, the exact training model indices 
used in the model trained to distinguish the identities of 
high-fidelity stimuli was tested on data from epochs in 
which degraded stimuli were presented. The number of 
trials included in each decoding model is reported in 
Supplementary Table 1. Due to the pairwise classification 
scheme, chance decoding accuracy was 50%.

2.5.  Statistical inference

In each decoding analysis, statistical testing was con-
ducted to determine whether stimulus information was 
present in the relevant EEG signal. To determine whether 
decoding accuracy was above chance and to quantify 
differences in decoding accuracies across conditions, 
Bayes factors (BF) were computed using the R package 
BayesFactor (Dienes, 2011; Rouder et al., 2009; Teichmann, 
2022). These analyses employed alternative hypotheses 
with JZS prior (default scale factor = 0.707) and a null 
hypothesis prior set at chance level. Bayes factors were 
then calculated to represent the probability of the 
observed data occurring under the alternative hypothe-
sis relative to the null hypothesis. All in-house scripts for 
using Bayes factor analyses to detect differences in 
decoding accuracy are openly available (https://osf​.io​
/cqyp2/). In line with standard interpretation guidelines, 
Bayes Factors >10 were interpreted as strong evidence 
in support of the alternative hypothesis, and Bayes Fac-
tors <1/3 represented strong evidence in favour of the 
null hypothesis (Jarosz & Wiley, 2014; Rouder et  al., 
2009). Bayes Factors >3 and <10 were interpreted as 
representing moderate evidence in support of the 

alternative hypothesis. We designated the onset of 
decoding as the timepoint at which there was moderate 
evidence (BF  >  3) of above-chance classifier perfor-
mance over at least three successive time points. In 
cases where this criterion was not met, decoding accu-
racy (or differences between decoding models) was not 
considered to be reliable.

Frequentist cluster-based permutation corrections 
for multiple comparisons are also reported. For these 
corrections, t-tests were conducted at each timepoint 
(one-tailed for vs. chance comparisons, two-tailed for 
between-model comparisons). Analyses yielding p-values 
<0.01 were included in clusters. For each comparison, 
10,000 permutations were conducted to calculate the 
probability that each defined cluster (summarised by the 
cluster t-score sum) could occur when no underlying 
effect was present. All clusters with resultant p-values 
of <0.05 are reported.

3.  RESULTS

3.1.  Behavioural analyses

All participants performed above chance accuracy (25%) 
on the attention-probe task, with an average accuracy 
of 88.1% (SD = 9.67, range = 47%–99%). In the debrief 
questionnaires, no participants spontaneously reported 
noticing any patterns in the presented stimuli. In free-
response multiple choice questions, four participants 
correctly reported one of the four employed stimulus 
pairs. In prompted matching, six participants correctly 
identified one of the four employed stimulus pairs. Each 
correct response was provided by a different partici-
pant. All participants who correctly reported pre-target/
target pairs in the free-response multiple choice failed 
to replicate these correct responses within the multiple-
choice questions. Overall performance on both free-
response multiple choice and prompted matching was 
not significantly different from chance (free-response: 
X2(1)  =  0.062, p  =  0.804; prompted: X2(1)  =  0.212, 
p = 0.645), indicating that participants were not explic-
itly aware of the predictive structure present within the 
RSVP sequences.

3.2.  Decoding analysis 1: effect of diffeomorphic degradation on 
image classification fidelity

In a first step, the representations of high-fidelity and 
degraded stimuli shown in the Random RSVP sequences 
were compared (Fig.  3). In this analysis, a model was 

https://osf.io/cqyp2/
https://osf.io/cqyp2/
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trained and tested on high-fidelity stimuli presented in the 

Random Block, and then tested on both high-fidelity and 

degraded stimuli presented within the same block. This 

analysis aimed to establish baseline representational dif-

ferences between degraded and high-fidelity stimuli in 

the absence of predictive structure. As a control, a clas-

sifier was also trained and tested on degraded stimuli 

from Random RSVP sequences (Suplementary Figure 1).

We designated the onset of decoding as the time-

point at which there was moderate evidence (BF>3) of 

above-chance classifier performance over at least 

three  successive time points. Decoding accuracy for 

degraded stimuli was significantly lower than decoding 

accuracy for high-fidelity stimuli. Specifically, decoding 

accuracy was consistently above chance for both high-

fidelity (from 78–457  ms) and degraded stimuli (from 

82–500 ms). This indicates that patterns of neural activ-

ity reliably distinguished between object identities in 

the absence of any statistical structure in the RSVP 

sequences. Critically, decoding accuracy for degraded 

stimuli was consistently lower than that of high-fidelity 

stimuli between 117-140 ms and 164-290 ms following 

stimulus presentation.

3.3.  Decoding analysis 2: effect of fulfilled predictions on image 
classification fidelity

In a second step, we tested for representational differ-
ences between identical objects that were either expected 
(thus fulfilling predictions) or random (in which no specific 
object identity could be predicted; see Fig. 4). We initially 
considered only high-fidelity stimuli. We trained a classi-
fier on high-fidelity stimuli from the Random block and 
compared decoding accuracy for each relevant object 
when it appeared predictably or randomly. Decoding 
accuracy for predicted stimuli was consistently above 
chance from 78-429 ms after stimulus onset, but there 
was minimal evidence for a difference in decoding accu-
racy for predicted versus random stimuli (max BF = 1.78 
at 199 ms). Next, we compared decoding accuracy for 
degraded stimuli across predicted and random presen-
tations. For this analysis we trained the classifier on 
high-fidelity stimuli from the Random block and exam-
ined decoding accuracy for each degraded object when 
it appeared predictably or randomly. Decoding accuracy 
was above chance for degraded stimuli in both the 
random and predicted conditions, indicating separable 
representations for these images. Notably, decoding 
accuracy for degraded stimuli was reliably higher for 

Fig. 3.  Decoding accuracy for randomly presented high-fidelity and degraded stimuli for 16 different object identities. 
(A) Sample mean decoding accuracy (upper) and BF comparisons between models (lower) across time (x-axis in ms). 
Chance performance (50%) is denoted in grey, and stimulus onset is denoted by the dotted vertical line. (B) Bayes Factor 
plots. In these plots, the dotted grey line marks BF = 3 (the boundary for moderate evidence). Tests yielding BF > 3 are 
represented by filled dots. Solid bars beneath Bayes factor plots highlight comparisons which survive frequentist cluster-
based permutation corrections for multiple comparisons (p < 0.05).
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predicted relative to random objects at 13 timepoints 
between 191 and 464 ms, indicating that the degraded 
objects had an enhanced neural representation when 
their high-fidelity versions were expected.

3.4.  Decoding analysis 3: effect of violated predictions on image 
classification fidelity

In a third set of analyses, we tested for representational 
differences between identical objects that were random 

or unexpected (see Fig. 5), separately for high-fidelity and 
degraded stimuli, using an analogous approach to that 
described above for predicted stimuli. For high-fidelity 
stimuli, decoding accuracy for unexpected objects was 
consistently above chance between 82-476  ms after 
stimulus onset. Likewise, for degraded stimuli decoding 
accuracy for unexpected objects was consistently above 
chance from 82-273 ms. Critically, there were also reli-
able differences in decoding between identical objects 
that were unexpected versus random. Specifically, for 

Fig. 4.  Decoding accuracy for randomly presented versus expected stimuli. (A, C) Decoding accuracy for high-fidelity 
and degraded stimuli, respectively. In these panels, the sample mean decoding accuracy is shown for all pair-wise 
stimulus combinations of the four possible expected stimuli across time (x-axis in ms). Chance performance (50%) is 
denoted in grey, and stimulus onset is denoted by the dotted vertical line. (B, D) Bayes Factor plots for each decoding 
model comparison. Within the Bayes Factor plots, the dotted grey line marks BF = 3 (the boundary for moderate 
evidence). Dots which are coloured represent comparisons yielding BF > 3. Solid bars beneath Bayes factor plots highlight 
comparisons which survive frequentist cluster-based permutation corrections for multiple comparisons (p < 0.05).
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Fig. 5.  Comparison of decoding accuracies for high-fidelity stimuli presented in random versus unexpected positions.  
(A, C) Decoding accuracy for high-fidelity and degraded stimuli, respectively. Panels show sample mean decoding 
accuracy for all pair-wise stimulus combinations of the eight possible unexpected stimuli across time (x-axis in ms). 
Chance performance (50%) is denoted in grey, and stimulus onset is denoted by the dotted vertical line. (B, D) Bayes 
factors for each relevant decoding model comparison. Dotted grey lines mark BF = 3 (the boundary for moderate 
evidence). Dots which are coloured represent comparison yielding BF > 3. Solid bars beneath Bayes factor plots 
highlight comparisons which survive frequentist cluster-based permutation corrections for multiple comparisons 
(p < 0.05).
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high-fidelity stimuli decoding accuracy for unexpected 
objects was intermittently lower than that of random 
objects between 113-164 ms and 207-289 ms post-target 
onset. This difference in pair-wide decoding accuracy was 
generally consistent across the individual image compar-
isons (Supplementary Fig. 2). Likewise, for degraded 
stimuli decoding accuracy for unexpected objects was 
consistently below that of random objects between 234-
324 ms.

3.5.  Decoding analysis 4: decoding representations  
of prediction content

In a final step, we asked whether neural representations of 
expected stimuli could be decoded from patterns of brain 
activity even when the expectation was violated (i.e., when 
an unexpected stimulus was shown instead). To do this, all 
trials containing an unexpected stimulus (both high-fidelity 
and degraded) were tested using a model trained to iden-
tify stimuli that were expected. Critically, this comparison 
aimed to decode information about the stimulus that was 
expected, but not presented (see Fig. 6). To ensure decod-
ing performance was not related to low- or high-level 
similarities between expected and unexpected stimuli, a 
control analysis was also conducted. Specifically, the 
same decoding models were tested on data matched to 
the comparator analysis in terms of stimulus identity, 
expected stimulus identity, trial numbers, and block of 
acquisition. The only difference between these main and 
control analyses was that in the main analysis, specific 
stimuli were expected (but not presented), whereas in the 
control analysis specific stimuli were neither expected nor 
unexpected (i.e., they appeared randomly).

As shown in Figure 6, decoding accuracy for expected 
(but not presented) stimuli was above chance from 80-
360 ms after stimulus onset. By contrast, for the control 
analysis decoding accuracy was not consistently differ-
ent from chance between 0 and 500 ms (max BF = 3.49). 
Critically, decoding accuracy for expected (but not pre-
sented) stimuli was consistently above that of the control 
model between 84 and 348 ms. While the peak decoding 
accuracy for expected (but not presented) stimuli was 
lower than that shown in Figure 4 for expected (and pre-
sented) stimuli, this is not surprising given that the 
decoded stimulus in the former was never actually pre-
sented. Although here we combined data from both high-
fidelity and degraded stimuli, trends towards the reported 
decoding effects were also present when the analysis 
was repeated for high-fidelity and degraded stimuli sep-
arately (see Supplementary Fig. 3).

4.  DISCUSSION

The goal of our study was to determine whether visual 
images of real-world objects are represented differently 
in the brain when the likelihood of their occurrence (i.e., 
their predictability) is systematically varied. Previous 
work using low-level visual properties has shown that 
unexpected stimuli are represented with higher fidelity 
than those which are expected or appear with no predic-
tive information (i.e., at random) (Smout et al., 2019; Tang 
et al., 2018). To date, however, no study has investigated 
the influence of expectations on multivariate representa-
tions of higher-level visual objects. We found that neural 
representations of identical object stimuli were modu-
lated by expectation. In contrast to previous investiga-
tions (Smout et al., 2019; Tang et al., 2018), a significant 
reduction was identified in the information represented 
for unexpected stimuli relative to random stimuli. We also 
found evidence of co-activation of expected and unex-
pected representations in cases where a specific image 
was expected but was not presented. Notably, neural 
representations of degraded, but not high-fidelity, stimuli 
were enhanced when objects were predicted, indicating 
that expectation influences the fidelity of neural patterns 
of activity related to ambiguous visual input. Participants 
were not explicitly aware of this predictive structure and 
key prediction effects were in the opposite direction as 
would be expected if they were driven by general sur-
prise or attention effects (e.g., worse decoding for stimuli 
expected to cause surprise or capture attention) (Alink & 
Blank, 2021; Feuerriegel et al., 2021; Grootswagers et al., 
2021).

Critically, predictive information modulated neural 
repesentations of presented images. For the degraded 
images, expected stimuli yielded higher decoding accu-
racies than when identical stimuli were presented ran-
domly. This finding indicates that predictive relationships 
may help resolve perceptual uncertainty and facilitate 
higher-fidelity representations of degraded visual stimuli. 
Interestingly, these effects were not evident for high-fidelity 
objects: decoding accuracy for high-fidelity images was 
not different in cases where these stimuli were expected 
versus random. Future research is needed to evaluate 
whether this null result indicates that predictive informa-
tion mainly contributes to uncertainty resolution or 
whether prediction subtly modulates the representa-
tions of high-fidelity stimuli in a manner which was not 
detected in this paradigm.

Additionally, we found that unexpected stimuli have 
reduced representational fidelity compared with identical, 
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randomly presented images. In a previous study, Tang 
et al. (2018) found that orientation selectivity was increased 
for unexpected relative to expected gratings. This result 
apparently contrasts with those of the present study, but 
there are several potential explanations for this differ-
ence. First, the content of the generated predictions likely 

varied across studies. In the study of Tang et al. (2018), 
the generated predictions contained information specifi-
cally pertaining to stimulus orientation. While similar low-
level feature predictions could plausibly be generated by 
the statistical structure used in this study, low-level pre-
dictions are not strictly necessary to explain the results of 

Fig. 6.  Decoding the identity of expected (but not presented) stimuli. (A) In the test model, the identity of expected 
target stimuli was decoded from trials in which these stimuli were expected, but not presented. (B) In the control model, 
the identity of expected target stimuli was decoded from random trials in which no stimuli were expected. These models 
were tested against a classifier trained to distinguish between expected stimuli (e.g., the model used in Fig. 4). If the 
tested stimuli do not contain any information about the expected (but not presented) image, decoding accuracy should 
be at chance. However, if the stimuli do contain information pertaining to the expected image, decoding accuracy should 
be above chance. (C) Decoding accuracy for all pair-wise stimulus combinations across time (x-axis in ms). Chance 
performance (50%) is denoted in grey, and stimulus onset is denoted by the dotted vertical line. (D) Bayes factors for each 
relevant comparison across time. The dotted grey line marks BF = 3 (the boundary for moderate evidence). Dots which 
are coloured represent comparison yielding BF > 3. Solid bars beneath Bayes factor plots highlight comparisons which 
survive frequentist cluster-based permutation corrections for multiple comparisons (p < 0.05).
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the present study. For example, when a cow is expected, 
this prediction could be operationalised in terms of 
expecting any image with cow-like semantic content 
(e.g., a prototypical cow image, or the same cow from 
any angle) instead of activating a specific pattern of 
expected low-level features (as in Tang et al., 2018).

This possibility is supported by our findings that pre-
dictive effects mainly arose in the time window associated 
with representations of categorical and semantic object 
information (peak latency at 150 – 250  ms) (T. Carlson 
et al., 2013; Cichy et al., 2016). For this reason, the cur-
rent results build upon rather than conflict with the find-
ings of previous studies examining the impact of low-level 
feature predictions. The current study provides evidence 
that predictions modulate how object stimuli are repre-
sented, but additional work is needed to clarify the exact 
content of these predictions and the specific perceptual 
stages at which they are integrated. It is therefore import-
ant for future studies to more explicitly investigate the 
effects of predictions for high- and low-level features 
within a single task to examine whether predictions for 
these features are independent or integrated.

Notably, in some cases, predictive effects continued 
after 250 ms post-presentation. This later time window is 
outside the range generally associated with object recog-
nition processes but aligns with the timing of more com-
plex visual processing (e.g., natural and effective scene 
processing) (Bo et al., 2022; Hansen et al., 2021). In line 
with predictive coding framework, these later differences 
in signal fidelity might plausibly represent the encoding, 
transmission, and integration of prediction error (or pre-
diction updating across the visual hierarchy (Summerfield 
& Egner, 2009). This is because prediction error/updating 
signalling occurs following the initial detection of a pre-
dictive relationship and would result in differences in sig-
nal information relative to the random condition. This 
change could be expected to result in decoding accuracy 
differences at later timepoints following the detection of 
predictive information.

In cases where expectations were violated, the 
observed neural responses contained content-specific 
information about the expected stimulus, and content-
specific information about the presented stimulus. This 
result is in line with past work. Specifically, Smout et al. 
(2019) found that neural responses to unexpected grating 
stimuli contained information related to the difference 
between expected and presented (unexpected) stimulus 
orientations. Our study builds upon this finding by 
demonstrating that neural responses to unexpected 
object stimuli also contain information about the stimulus 

which was expected (but not presented) in addition to 
visual information about the presented stimulus. Such 
activation of multiple representations concurrently might 
explain the comparatively lower decoding performance 
for unexpected stimuli, as these conflicting representa-
tions would likely result in noisier patterns of evoked neu-
ral activity.

This current study also aimed to investigate differ-
ences in representational dynamics between degraded 
and high-fidelity versions of the same object stimuli. The 
diffeomorphic warping we used is designed to preserve 
early visual features while disrupting higher recognition-
related image information (Stojanoski & Cusack, 2013). 
Our findings suggest that the very early representations 
of high-fidelity and diffeomorphically transformed stimuli 
are indeed similar, but that differences emerge before 
high-level stimulus properties are encoded.

Considered cumulatively, the findings of the current 
study provide an important and novel test of the key 
hypotheses of the predictive coding theory. First, the 
results demonstrate that neural representations of 
expected and unexpected object images are inherently 
different. This difference does not simply correlate with 
differences in surprise, attention, or response magnitude, 
but instead represents a difference in the type and quality 
of information represented in multivariate patterns of 
brain activity. Second, the identified differences in decod-
ing accuracy at timepoints associated with the represen-
tation of categorical semantic information provide 
evidence of predictive modulation within representations 
of high-level visual features. This result provides neuro-
physiological support for a key hypothesis arising from 
the predictive coding theory, namely, that information is 
predictively encoded throughout the visual processing 
hierarchy. Our study also suggests that predictive rela-
tionships modulate how information about ambiguous 
visual stimuli is encoded, demonstrating that expecta-
tions can be employed to facilitate more effective recog-
nition in cases where input is uncertain. Finally, our results 
provide evidence that representations of specific com-
plex stimuli are activated in response to perceptual pre-
dictions, regardless of whether these expected stimuli 
actually appear.

5.  CONCLUSION

Here we have provided novel insight into how predictive 
relationships modulate neural representations of com-
plex visual objects. Predictive structure was found to 
help resolve perceptual uncertainty, even in cases where 
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participants were not explicitly aware of this structure. 
Finally, representations of expected stimuli were acti-
vated in cases where specific images were expected but 
were not presented. Taken together, the current findings 
extend fundamental understanding of how the human 
brain detects and employs predictive relationships to 
modulate visual perception.
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