. Research Article
Imaging

Neuroscience

Check for
updates

an open access G journal

Expectation Modifies the Representational Fidelity of Complex
Visual Objects
Margaret Jane Moore, Amanda K. Robinson, Jason B. Mattingley

Queensland Brain Institute, University of Queensland, St. Lucia, Queensland

Corresponding Author: Margaret Jane Moore (margaret.moore@uq.edu.au)

ABSTRACT

Prediction has been shown to play a fundamental role in facilitating efficient perception of simple visual features such
as orientation and motion, but it remains unclear whether expectations modulate neural representations of more com-
plex stimuli. Here, we addressed this issue by characterising patterns of brain activity evoked by two-dimensional
images of familiar, real-world objects which were either expected or unexpected based on a preceding cue. Partici-
pants (n = 30) viewed stimuli in rapid serial visual presentation (RSVP) streams which contained both high-fidelity and
degraded (diffeomorphically warped) object images. Multivariate pattern analyses of electroencephalography (EEG)
data were used to quantify and compare the degree of information represented in neural activity when stimuli were
random (unpredictable), expected, or unexpected. Degraded images elicited reduced representational fidelity relative
to high-fidelity images. However, degraded images were represented with improved fidelity when they were presented
in expected relative to random sequence positions; and stimuli in unexpected sequence positions yielded reduced
representational fidelity relative to random presentations. Most notably, neural responses to unexpected stimuli con-
tained information pertaining to the expected (but not presented) stimulus. Debriefing at the conclusion of the exper-
iment revealed that participants were not aware of the relationship between cue and target stimuli within the RSVP
streams, suggesting that the differences in stimulus decoding between conditions arose in the absence of explicit
predictive knowledge. Our findings extend fundamental understanding of how the brain detects and employs predic-
tive relationships to modulate high-level visual perception.
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1. INTRODUCTION areas such as the prefrontal and parietal cortices are
thought to generate perceptual predictions, and these
predictions are passed to lower-level sensory areas.
These lower-level areas in turn generate prediction errors

which are passed to higher levels and are used to refine

Prediction plays a fundamental role in facilitating efficient
and accurate visual perception (Bar, 2009; Rao & Ballard,
1999; Summerfield & Egner, 2009). Predictive coding
models assert that during perception, bottom-up sensory

input is compared with top-down predictions at multiple
processing levels in the brain (Millidge et al., 2021;
Summerfield & Egner, 2009). These comparisons are
used to generate internal representations of stimuli which
vary in their precision as a function of the comparative
strength of, and agreement between, expectations and
input (Millidge et al., 2021). Specifically, higher level brain

stored models of the world. This effectively reduces infor-
mation processing load since neural representations are
only updated when new inputs deviate from what is pre-
dicted (Summerfield & Egner, 2009).

While predictive coding models have been influential in
human vision science (Kok & de Lange, 2015), a number
of key hypotheses arising from them remain untested.
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Specifically, although predictions have been shown to
influence the encoding of low-level visual features, such
as orientation and motion (Ekman et al., 2017; Hogendoorn
& Burkitt, 2018; Tang et al., 2018), it is not known whether
a similar influence arises for more complex visual stimuli
which involve higher-order processes encompassing
feature integration and extraction of meaning. To address
this gap, here we recorded electroencephalography
(EEG) while participants viewed statistically structured
sequences of images depicting familiar real-world objects,
and applied multivariate pattern analyses (MVPA) to
determine whether predictability modulates how such
objects are represented in the brain and whether pre-
dictions help resolve ambiguous perceptual input.

A key tenet of the predictive coding theory is that stim-
uli should be predictively encoded across multiple levels
of the visual processing hierarchy (Kok & de Lange, 2015;
Millidge et al., 2021). Previous studies in human observ-
ers and in animal models have shown that for elementary
visual features such as orientation, unexpected stimuli
yield enhanced representations relative to expected or
random stimuli (Smout et al., 2019; Tang et al., 2018,
2023). However, it is unclear whether similar low-level
predictive effects hold for complex, real-world stimuli
which possess high-level semantic features. The poten-
tial role of predictive coding in modulating neural repre-
sentations of higher-level visual stimuli has not been
widely investigated. Using functional magnetic reso-
nance imaging (fMRI) in human participants, Richter et al.
(2018) found that neural responses to expected complex
object stimuli were suppressed relative to those elicited
by unexpected stimuli, across both early visual and
higher-level ventral stream areas. Conversely, den Ouden
et al. (2023) found no differences in face-evoked event-
related potentials (ERPs) for expected versus unexpected
stimuli. In a study of neuronal responses in the macaque
inferior temporal cortex, Kaposvari et al. (2018) found
that activity was enhanced for object stimuli that violated
expectations relative to those that were expected.

Critically, most previous studies of visual prediction
effects have compared differences in response magni-
tude for expected and unexpected stimuli, an approach
which ignores potentially important stimulus-specific
information contained within neural signals. More specif-
ically, attenuation of signal-encoding for expected stimuli
could plausibly result from either an overall lowering of
stimulus-relevant activation, or from preserved stimulus-
relevant activation coupled with a reduction in sensory
noise (Feuerriegel et al., 2021). In line with the predictive
coding theory, larger evoked responses to unexpected

stimuli should reflect the additive effects of stimulus-
relevant signals and prediction error (Summerfield &
Egner, 2009). Conversely, elevated responses to unex-
pected stimuli may be unrelated to content-specific pre-
dictions, but might instead reflect the presence of surprise
(see Feuerriegel et al., 2021). It is therefore important to
quantify the information carried by neural signals gener-
ated in response to unexpected versus expected stimuli
in order to further understanding of how predictive rela-
tionships affect visual perception.

The predictive coding theory also makes explicit
assertions about how predictions modulate the encoding
of sensory input. Specifically, top-down predictive signals
are expected to constrain the interpretation of bottom-up
visual input, thereby facilitating efficient (and accurate)
interpretation of potentially degraded bottom-up sensory
input (Bar, 2004; Summerfield & Egner, 2009). In other
words, perceptual predictions should improve the pre-
cision with which degraded visual stimuli are encoded
(Esterman & Yantis, 2010). Previous behavioural work has
demonstrated that contextual and associative expecta-
tions facilitate recognition of visual stimuli (Esterman &
Yantis, 2010; Joubert et al., 2007; Oliva & Torralba, 2007;
Puri & Woijciulik, 2008), but little work has been undertaken
to clarify the neural mechanisms underlying this effect.

Here, we addressed this issue by investigating how
perceptual predictions modulate the neural encoding of
both high-fidelity and perceptually degraded stimuli. We
degraded our stimuli by applying diffeomorphic warping
to a subset of the object images (for details, see Stojanoski
& Cusack, 2013). Diffeomorphic degradation is designed
to reduce identifying information while preserving low-
level image characteristics, and has been shown to dis-
rupt object recognition in human observers (Stojanoski &
Cusack, 2013). We used diffeomorphic degradation to
reduce the representational fidelity of object images, and
asked whether object identification and associated neural
activity are differentially affected when such degraded
stimuli are expected versus unexpected.

Multivariate decoding analyses applied to time-
resolved neuroimaging data provide an ideal method for
evaluating these questions as they enable quantification
of information encoded in the brain across time (T.A.
Carlson et al., 2020; Oosterhof et al., 2016). Temporal
multivariate pattern analysis (MVPA) is able to identify
complex, multivariate relationships in patterns of activation
across brain areas, and can be used to associate these
variables with the information they represent (Mouchetant-
Rostaing et al., 2000; Oosterhof et al., 2016). Here, we
used multivariate decoding to quantify differences in the
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neural representations of complex object stimuli when
these appeared in expected, unexpected, and random
conditions. Our aim was to determine whether predictive
information modulates the representation of both high-
fidelity and degraded object images. We recorded partic-
ipants’ brain activity using EEG as they viewed sequences
of images depicting familiar real-world objects, and used
MVPA to quantify whether, and to what extent, neural rep-
resentations of identical objects are modulated by whether
they are expected, unexpected or appear in the absence
of any predictive structure.

2. METHODS
2.1. Participants

Thirty participants (24 female, 2 left-handed, average
age = 24.6 years, range = 20-52 years) were recruited from
The University of Queensland and were compensated for
their time at a rate of AUD 20 per hour. All included partic-
ipants reported normal or corrected-to-normal vision and
provided informed consent in writing. The study procedure
was approved by The University of Queensland Human
Research Ethics committee (HREA 2016001247).

2.2. Paradigm

The study aimed to characterise neural representations
of high-fidelity and degraded visual images of real-
world objects that appeared at expected or unexpected
positions within rapid serial visual presentation (RSVP)
sequences at fixation. The stimulus images consisted
of 16 objects obtained from www.pngimg.com. These
images have been used in previous RSVP object-identity
decoding paradigms, and are reliably decodable from
EEG data (Grootswagers et al., 2019). Perceptual
expectations were generated by introducing a reliable
statistical structure to the order in which stimuli were
presented. Specifically, image sequences were structured
such that four pre-target images predicted the identity
of a subsequent target stimulus with 80% accuracy.
The same pre-target/target image pairs (defined in
Fig. 1) were used for all participants. These target stim-
uli could be either high-fidelity or degraded. Degraded
stimuli were constructed through diffeomorphic warp-
ing. This manipulation iteratively applies a flow field
generated from cosine components with random phase
and amplitude, leading to an equal probability of each
pixel being expanded or contracted. The degraded
stimuli were generated by applying seven sequential
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Fig. 1. Visual stimuli used in the study. (A) High-fidelity
images. (B) Degraded stimuli created through diffeomorphic
warping. (C) Pre-target objects and their associated
expected target stimuli. The same Pre-Target/Target pairs
were used for all participants.

warps to images with a maximum possible distortion
value of 20 (Stojanoski & Cusack, 2013).

RSVP streams were shown to participants in three dis-
tinct block types: Random, Exposure, and Testing (Fig. 2),
as described below.

2.2.1. Random block

The purpose of the Random block was to estimate robust
neural representations for each object where no predic-
tive information was present. In the Random Block, all 32
stimuli (both degraded and high-fidelity) were presented
in random order with no statistical structure (8 sequences,
~40 exposures per unique stimulus images: high-fidelity
or degraded).
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Fig. 2. Examples of RSVP sequences included in each block type. Random Blocks contained all stimuli in random
order. Exposure Blocks contained high-fidelity stimuli only and served to expose participants to the predictive
structure of the RSVP sequences. Testing Blocks contained both high-fidelity and degraded stimuli in the described
predictive structure. When a randomly presented (i.e., unpredictable) stimulus is presented following a pre-target
stimulus, this random stimulus is classed as unexpected. Type denotes stimulus category, and ms refers to exposure

time (in milliseconds).

2.2.2. Exposure block

The purpose of the Exposure block was to expose partic-
ipants to the predictive statistical structure within the
RSVP streams. This exposure was intended to give
participants an opportunity to passively learn (either
explicitly or implicitly) stimulus associations prior to test-
ing whether violating this structure modulated neural
responses. In this block, high-fidelity stimuli were pre-
sented, and the predictive statistical structure was added
(20 sequences, ~200 exposures per stimulus). The Expo-
sure Block included an average of 200 exposures of each
pre-target/target image pair, with 80% of pre-target
images being followed by the “expected” stimulus and
the remaining 20% being followed by an “unexpected
stimulus” (see Fig. 1C). In the Exposure and subsequent
Testing blocks, target stimuli were never presented in
cases where they were not preceded by the appropriate
pre-target stimulus (defined in Fig. 1). Unexpected stimuli
were defined as any stimulus which appeared in a posi-
tion in which a specific target was expected (see Fig. 2).
Defined pre-target and target stimuli were never pre-
sented in unexpected positions.

Participants were not explicitly told of the predictive
relationship between the pre-target/target pairs. Each
predictive pair was presented 5-10 times per sequence.
Data from the Exposure Block were used to passively
expose participants to the used statistical structure only,
and were not used to train or test decoding models. EEG
data were recorded during the Exposure Block, but this
was not used in any decoding analyses.

2.2.3. Testing block

The purpose of the Testing Block was to generate the
data needed to evaluate whether predicted versus
unpredicted targets yielded different neural decoding
accuracies relative to the same stimuli presented ran-
domly (i.e., in which there was no predictive cue to the
targets’ occurrence). The Testing Block included 45
RSVP sequences (~450 exposures per predictive pair).
Both degraded and high-fidelity stimuli were presented
within the Testing Block. In this block, 40% of pre-
target images were followed by the high-fidelity
expected stimulus, 40% were followed by the degraded
version of the expected stimulus, and 20% were fol-
lowed by an unexpected object (objects never pre-
dicted). Testing Block images were classed as either
(1) “expected,” in which the target stimuli were consis-
tent with the identity predicted by the preceding pre-
target stimulus; (2) “unexpected,” where the target
stimuli were inconsistent with the identity predicted by
the pre-target; or (3) random, in which there was no
predictive information carried by the preceding image.
These designations were assigned to both the high-
fidelity and degraded stimuli.

Participants were instructed to monitor the RSVP
sequences and perform an orthogonal task in which they
reported the number of attention probes (red stars) pres-
ent in each sequence. The goal of the attention task was
to ensure participants maintained attention on the stimu-
lus streams without the requirement to perform explicit
object identification (Grootswagers et al., 2019). Stimuli
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were presented at a rate of 5 Hz (100 ms exposure with
100 ms blank interstimulus intervals). Participants viewed
73 RSVP sequences, each containing 160 object stimuli
and 1-4 attention probes. Attention probes were pseudo-
randomly distributed with the constraint that they could
not appear within the first or last 10 images, and that a
minimum of 10 images were shown between each atten-
tion probe. Sequences were also constructed such that
no image was immediately repeated. At the end of each
stream, participants were prompted to report how many
attention probes they had seen using numbered keys
(1-4), and were provided feedback on their accuracy.

The full paradigm lasted approximately 60 minutes,
and participants were encouraged to take short rest
breaks between sequences. Following the main experi-
ment, participants completed a debrief questionnaire, the
aim of which was to assess whether they were aware of
the statistical structure embedded within the relevant
blocks. Participants were first asked to report whether
they “noticed anything about the images.” Next, they
were asked to freely report whether they “noticed any
patterns within the images.” Following these free
response questions, participants were informed that the
presented sequences contained some images which pre-
dicted the identity of the subsequent image, and were
given multiple-choice questions to assess whether they
were able to identify the pre-target and target images.
Following this, participants were shown each of the four
pre-target images in turn and asked to indicate its asso-
ciated target image, guessing if necessary.

2.3. EEG recordings and pre-processing

Continuous EEG data were recorded using a BioSemi
system and digitized at a sampling rate of 1024 Hz. The
64 electrodes were arranged according to the interna-
tional standard 10-10 system for electrode placement
(Oostenveld & Praamstra, 2001). Recorded data were
pre-processed using EEGLAB functions (Delorme &
Makeig, 2004). Specifically, raw EEG data were re-
referenced to mastoid channels and were filtered using
high pass (0.1 Hz) and low pass (100 Hz) frequency filters.
Noisy electrode channels were identified using joint prob-
ability, and channels were rejected if they exceeded 5
standard deviations from the average (mean number
interpolated = 1.07 electrodes, SD = 1.89, range = 0-6).
These channels were reconstructed using spherical
interpolation. EEG data were then down-sampled to
256 Hz, divided into stimulus presentation-locked epochs
including the time interval from [-100 ms to +1000 ms]

from stimulus presentation, and baseline corrected. No
other pre-processing or data cleaning was performed.

2.4. Decoding analysis

EEG data were analysed using a multivariate pattern
analysis (MVPA) decoding pipeline (Grootswagers et al.,
2017; Oosterhof et al., 2016) involving regularised linear
discriminant analysis (LDA) based classifiers. Importantly,
this method quantifies the discriminability of images from
the neural signal, essentially measuring the degree of
information carried by neural signals rather than simply
detecting differences in signal magnitude. Decoding
analyses were preformed based on raw EEG voltages
across all scalp electrodes. Decoding was preformed for
each timepoint independently, and additional temporal
data were not considered in analysis. Decoding analyses
were implemented using CoOSMoMVPA (Oosterhof et al.,
2016) in MATLAB. All decoding analyses were performed
at the participant level, but overall results were analysed
at the group-level.

For each participant, pair-wise decoding was con-
ducted across all object pairs present in the condition of
interest. For each pair of objects (objects A and B),
decoding classifiers only considered data from epochs in
which object A or B was presented. Classifiers were
trained to distinguish image A from image B based on
80% (randomly selected) of the included epochs, and the
accuracy of this model was assessed by calculating the
model’s percent correct when used to distinguish
between A and B in the remaining randomly selected
20% of relevant epochs. If classifiers are unable to reli-
ably distinguish between A and B in the testing dataset,
model accuracy will be at chance (50%). This process is
repeated five times for each pair, with accuracy being the
average percent correct classifications within the testing
data. This process is repeated independently across
each timepoint for each of the included object pairs.
Overall decoding accuracy for each condition is the aver-
age accuracy of classifiers across all considered object
pairs in a single participant. This accuracy data is aver-
aged at a group-level to yeild final decoding accuracy
values.

In each analysis, all pairwise combinations of images
which were presented in the relevant condition (i.e., cow
versus shirt, cow versus duck, etc.) were decoded. The
exact number and identity of object pairs in each analysis
is determined by the condition being considered. For
example, the four potentially expected objects were
considered in analyses aiming to decode expected
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objects while only the eight potentially unexpected objects
were included in analyses decoding unexpected objects
(see Figs. 1 and 2). Each decoding analysis involved
training classifiers on images presented in the indepen-
dent Random Blocks, in which there was no statistical
structure in the ordering of images and testing the classi-
fier model on the same images from specific conditions
of interest in the Testing Block. These models formed the
basis for comparing object representations across all
conditions. For assessing representations in the random
condition, the models were tested on the remaining
epochs of the same condition per iteration (20%). In
cases Where models were trained and tested on different
stimulus types (e.g., trained on high-fidelity images,
tested on degraded images) or different conditions (e.g.,
trained on random, tested on the predicted), the identical
epochs and classification schemes were used to train the
classifier, but models were tested on data from another
condition. For example, the exact training model indices
used in the model trained to distinguish the identities of
high-fidelity stimuli was tested on data from epochs in
which degraded stimuli were presented. The number of
trials included in each decoding model is reported in
Supplementary Table 1. Due to the pairwise classification
scheme, chance decoding accuracy was 50%.

2.5. Statistical inference

In each decoding analysis, statistical testing was con-
ducted to determine whether stimulus information was
present in the relevant EEG signal. To determine whether
decoding accuracy was above chance and to quantify
differences in decoding accuracies across conditions,
Bayes factors (BF) were computed using the R package
BayesFactor (Dienes, 2011; Rouder et al., 2009; Teichmann,
2022). These analyses employed alternative hypotheses
with JZS prior (default scale factor = 0.707) and a null
hypothesis prior set at chance level. Bayes factors were
then calculated to represent the probability of the
observed data occurring under the alternative hypothe-
sis relative to the null hypothesis. All in-house scripts for
using Bayes factor analyses to detect differences in
decoding accuracy are openly available (https://osf.io
/cqyp2/). In line with standard interpretation guidelines,
Bayes Factors >10 were interpreted as strong evidence
in support of the alternative hypothesis, and Bayes Fac-
tors <1/3 represented strong evidence in favour of the
null hypothesis (Jarosz & Wiley, 2014; Rouder et al.,
2009). Bayes Factors >3 and <10 were interpreted as
representing moderate evidence in support of the

alternative hypothesis. We designated the onset of
decoding as the timepoint at which there was moderate
evidence (BF > 3) of above-chance classifier perfor-
mance over at least three successive time points. In
cases where this criterion was not met, decoding accu-
racy (or differences between decoding models) was not
considered to be reliable.

Frequentist cluster-based permutation corrections
for multiple comparisons are also reported. For these
corrections, t-tests were conducted at each timepoint
(one-tailed for vs. chance comparisons, two-tailed for
between-model comparisons). Analyses yielding p-values
<0.01 were included in clusters. For each comparison,
10,000 permutations were conducted to calculate the
probability that each defined cluster (summarised by the
cluster t-score sum) could occur when no underlying
effect was present. All clusters with resultant p-values
of <0.05 are reported.

3. RESULTS

3.1. Behavioural analyses

All participants performed above chance accuracy (25%)
on the attention-probe task, with an average accuracy
of 88.1% (SD = 9.67, range = 47%-99%). In the debrief
questionnaires, no participants spontaneously reported
noticing any patterns in the presented stimuli. In free-
response multiple choice questions, four participants
correctly reported one of the four employed stimulus
pairs. In prompted matching, six participants correctly
identified one of the four employed stimulus pairs. Each
correct response was provided by a different partici-
pant. All participants who correctly reported pre-target/
target pairs in the free-response multiple choice failed
to replicate these correct responses within the multiple-
choice questions. Overall performance on both free-
response multiple choice and prompted matching was
not significantly different from chance (free-response:
X?(1) = 0.062, p = 0.804; prompted: X?(1) = 0.212,
p = 0.645), indicating that participants were not explic-
itly aware of the predictive structure present within the
RSVP sequences.

3.2. Decoding analysis 1: effect of diffeomorphic degradation on
image classification fidelity

In a first step, the representations of high-fidelity and
degraded stimuli shown in the Random RSVP sequences
were compared (Fig. 3). In this analysis, a model was
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trained and tested on high-fidelity stimuli presented in the
Random Block, and then tested on both high-fidelity and
degraded stimuli presented within the same block. This
analysis aimed to establish baseline representational dif-
ferences between degraded and high-fidelity stimuli in
the absence of predictive structure. As a control, a clas-
sifier was also trained and tested on degraded stimuli
from Random RSVP sequences (Suplementary Figure 1).

We designated the onset of decoding as the time-
point at which there was moderate evidence (BF>3) of
above-chance classifier performance over at least
three successive time points. Decoding accuracy for
degraded stimuli was significantly lower than decoding
accuracy for high-fidelity stimuli. Specifically, decoding
accuracy was consistently above chance for both high-
fidelity (from 78-457 ms) and degraded stimuli (from
82-500 ms). This indicates that patterns of neural activ-
ity reliably distinguished between object identities in
the absence of any statistical structure in the RSVP
sequences. Critically, decoding accuracy for degraded
stimuli was consistently lower than that of high-fidelity
stimuli between 117-140 ms and 164-290 ms following
stimulus presentation.

»

3.3. Decoding analysis 2: effect of fulfilled predictions on image
classification fidelity

In a second step, we tested for representational differ-
ences between identical objects that were either expected
(thus fulfilling predictions) or random (in which no specific
object identity could be predicted; see Fig. 4). We initially
considered only high-fidelity stimuli. We trained a classi-
fier on high-fidelity stimuli from the Random block and
compared decoding accuracy for each relevant object
when it appeared predictably or randomly. Decoding
accuracy for predicted stimuli was consistently above
chance from 78-429 ms after stimulus onset, but there
was minimal evidence for a difference in decoding accu-
racy for predicted versus random stimuli (max BF = 1.78
at 199 ms). Next, we compared decoding accuracy for
degraded stimuli across predicted and random presen-
tations. For this analysis we trained the classifier on
high-fidelity stimuli from the Random block and exam-
ined decoding accuracy for each degraded object when
it appeared predictably or randomly. Decoding accuracy
was above chance for degraded stimuli in both the
random and predicted conditions, indicating separable
representations for these images. Notably, decoding
accuracy for degraded stimuli was reliably higher for
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Chance performance (50%) is denoted in grey, and stimulus onset is denoted by the dotted vertical line. (B) Bayes Factor
plots. In these plots, the dotted grey line marks BF = 3 (the boundary for moderate evidence). Tests yielding BF > 3 are
represented by filled dots. Solid bars beneath Bayes factor plots highlight comparisons which survive frequentist cluster-
based permutation corrections for multiple comparisons (p < 0.05).
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predicted relative to random objects at 13 timepoints
between 191 and 464 ms, indicating that the degraded
objects had an enhanced neural representation when
their high-fidelity versions were expected.

3.4. Decoding analysis 3: effect of violated predictions on image
classification fidelity

In a third set of analyses, we tested for representational
differences between identical objects that were random

or unexpected (see Fig. 5), separately for high-fidelity and
degraded stimuli, using an analogous approach to that
described above for predicted stimuli. For high-fidelity
stimuli, decoding accuracy for unexpected objects was
consistently above chance between 82-476 ms after
stimulus onset. Likewise, for degraded stimuli decoding
accuracy for unexpected objects was consistently above
chance from 82-273 ms. Critically, there were also reli-
able differences in decoding between identical objects
that were unexpected versus random. Specifically, for
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high-fidelity stimuli decoding accuracy for unexpected
objects was intermittently lower than that of random
objects between 113-164 ms and 207-289 ms post-target
onset. This difference in pair-wide decoding accuracy was
generally consistent across the individual image compar-
isons (Supplementary Fig. 2). Likewise, for degraded
stimuli decoding accuracy for unexpected objects was
consistently below that of random objects between 234-
324 ms.

3.5. Decoding analysis 4: decoding representations
of prediction content

In a final step, we asked whether neural representations of
expected stimuli could be decoded from patterns of brain
activity even when the expectation was violated (i.e., when
an unexpected stimulus was shown instead). To do this, all
trials containing an unexpected stimulus (both high-fidelity
and degraded) were tested using a model trained to iden-
tify stimuli that were expected. Critically, this comparison
aimed to decode information about the stimulus that was
expected, but not presented (see Fig. 6). To ensure decod-
ing performance was not related to low- or high-level
similarities between expected and unexpected stimuli, a
control analysis was also conducted. Specifically, the
same decoding models were tested on data matched to
the comparator analysis in terms of stimulus identity,
expected stimulus identity, trial numbers, and block of
acquisition. The only difference between these main and
control analyses was that in the main analysis, specific
stimuli were expected (but not presented), whereas in the
control analysis specific stimuli were neither expected nor
unexpected (i.e., they appeared randomly).

As shown in Figure 6, decoding accuracy for expected
(but not presented) stimuli was above chance from 80-
360 ms after stimulus onset. By contrast, for the control
analysis decoding accuracy was not consistently differ-
ent from chance between 0 and 500 ms (max BF = 3.49).
Critically, decoding accuracy for expected (but not pre-
sented) stimuli was consistently above that of the control
model between 84 and 348 ms. While the peak decoding
accuracy for expected (but not presented) stimuli was
lower than that shown in Figure 4 for expected (and pre-
sented) stimuli, this is not surprising given that the
decoded stimulus in the former was never actually pre-
sented. Although here we combined data from both high-
fidelity and degraded stimuli, trends towards the reported
decoding effects were also present when the analysis
was repeated for high-fidelity and degraded stimuli sep-
arately (see Supplementary Fig. 3).
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4. DISCUSSION

The goal of our study was to determine whether visual
images of real-world objects are represented differently
in the brain when the likelihood of their occurrence (i.e.,
their predictability) is systematically varied. Previous
work using low-level visual properties has shown that
unexpected stimuli are represented with higher fidelity
than those which are expected or appear with no predic-
tive information (i.e., at random) (Smout et al., 2019; Tang
et al., 2018). To date, however, no study has investigated
the influence of expectations on multivariate representa-
tions of higher-level visual objects. We found that neural
representations of identical object stimuli were modu-
lated by expectation. In contrast to previous investiga-
tions (Smout et al., 2019; Tang et al., 2018), a significant
reduction was identified in the information represented
for unexpected stimuli relative to random stimuli. We also
found evidence of co-activation of expected and unex-
pected representations in cases where a specific image
was expected but was not presented. Notably, neural
representations of degraded, but not high-fidelity, stimuli
were enhanced when objects were predicted, indicating
that expectation influences the fidelity of neural patterns
of activity related to ambiguous visual input. Participants
were not explicitly aware of this predictive structure and
key prediction effects were in the opposite direction as
would be expected if they were driven by general sur-
prise or attention effects (e.g., worse decoding for stimuli
expected to cause surprise or capture attention) (Alink &
Blank, 2021; Feuerriegel et al., 2021; Grootswagers et al.,
2021).

Critically, predictive information modulated neural
repesentations of presented images. For the degraded
images, expected stimuli yielded higher decoding accu-
racies than when identical stimuli were presented ran-
domly. This finding indicates that predictive relationships
may help resolve perceptual uncertainty and facilitate
higher-fidelity representations of degraded visual stimuli.
Interestingly, these effects were not evident for high-fidelity
objects: decoding accuracy for high-fidelity images was
not different in cases where these stimuli were expected
versus random. Future research is needed to evaluate
whether this null result indicates that predictive informa-
tion mainly contributes to uncertainty resolution or
whether prediction subtly modulates the representa-
tions of high-fidelity stimuli in a manner which was not
detected in this paradigm.

Additionally, we found that unexpected stimuli have
reduced representational fidelity compared with identical,
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randomly presented images. In a previous study, Tang
et al. (2018) found that orientation selectivity was increased
for unexpected relative to expected gratings. This result
apparently contrasts with those of the present study, but
there are several potential explanations for this differ-
ence. First, the content of the generated predictions likely
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varied across studies. In the study of Tang et al. (2018),
the generated predictions contained information specifi-
cally pertaining to stimulus orientation. While similar low-
level feature predictions could plausibly be generated by
the statistical structure used in this study, low-level pre-
dictions are not strictly necessary to explain the results of
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the present study. For example, when a cow is expected,
this prediction could be operationalised in terms of
expecting any image with cow-like semantic content
(e.g., a prototypical cow image, or the same cow from
any angle) instead of activating a specific pattern of
expected low-level features (as in Tang et al., 2018).

This possibility is supported by our findings that pre-
dictive effects mainly arose in the time window associated
with representations of categorical and semantic object
information (peak latency at 150 — 250 ms) (T. Carlson
et al., 2013; Cichy et al., 2016). For this reason, the cur-
rent results build upon rather than conflict with the find-
ings of previous studies examining the impact of low-level
feature predictions. The current study provides evidence
that predictions modulate how object stimuli are repre-
sented, but additional work is needed to clarify the exact
content of these predictions and the specific perceptual
stages at which they are integrated. It is therefore import-
ant for future studies to more explicitly investigate the
effects of predictions for high- and low-level features
within a single task to examine whether predictions for
these features are independent or integrated.

Notably, in some cases, predictive effects continued
after 250 ms post-presentation. This later time window is
outside the range generally associated with object recog-
nition processes but aligns with the timing of more com-
plex visual processing (e.g., natural and effective scene
processing) (Bo et al., 2022; Hansen et al., 2021). In line
with predictive coding framework, these later differences
in signal fidelity might plausibly represent the encoding,
transmission, and integration of prediction error (or pre-
diction updating across the visual hierarchy (Summerfield
& Egner, 2009). This is because prediction error/updating
signalling occurs following the initial detection of a pre-
dictive relationship and would result in differences in sig-
nal information relative to the random condition. This
change could be expected to result in decoding accuracy
differences at later timepoints following the detection of
predictive information.

In cases where expectations were violated, the
observed neural responses contained content-specific
information about the expected stimulus, and content-
specific information about the presented stimulus. This
result is in line with past work. Specifically, Smout et al.
(2019) found that neural responses to unexpected grating
stimuli contained information related to the difference
between expected and presented (unexpected) stimulus
orientations. Our study builds upon this finding by
demonstrating that neural responses to unexpected
object stimuli also contain information about the stimulus
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which was expected (but not presented) in addition to
visual information about the presented stimulus. Such
activation of multiple representations concurrently might
explain the comparatively lower decoding performance
for unexpected stimuli, as these conflicting representa-
tions would likely result in noisier patterns of evoked neu-
ral activity.

This current study also aimed to investigate differ-
ences in representational dynamics between degraded
and high-fidelity versions of the same object stimuli. The
diffeomorphic warping we used is designed to preserve
early visual features while disrupting higher recognition-
related image information (Stojanoski & Cusack, 2013).
Our findings suggest that the very early representations
of high-fidelity and diffeomorphically transformed stimuli
are indeed similar, but that differences emerge before
high-level stimulus properties are encoded.

Considered cumulatively, the findings of the current
study provide an important and novel test of the key
hypotheses of the predictive coding theory. First, the
results demonstrate that neural representations of
expected and unexpected object images are inherently
different. This difference does not simply correlate with
differences in surprise, attention, or response magnitude,
but instead represents a difference in the type and quality
of information represented in multivariate patterns of
brain activity. Second, the identified differences in decod-
ing accuracy at timepoints associated with the represen-
tation of categorical semantic information provide
evidence of predictive modulation within representations
of high-level visual features. This result provides neuro-
physiological support for a key hypothesis arising from
the predictive coding theory, namely, that information is
predictively encoded throughout the visual processing
hierarchy. Our study also suggests that predictive rela-
tionships modulate how information about ambiguous
visual stimuli is encoded, demonstrating that expecta-
tions can be employed to facilitate more effective recog-
nition in cases where input is uncertain. Finally, our results
provide evidence that representations of specific com-
plex stimuli are activated in response to perceptual pre-
dictions, regardless of whether these expected stimuli
actually appear.

5. CONCLUSION

Here we have provided novel insight into how predictive
relationships modulate neural representations of com-
plex visual objects. Predictive structure was found to
help resolve perceptual uncertainty, even in cases where
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participants were not explicitly aware of this structure.
Finally, representations of expected stimuli were acti-
vated in cases where specific images were expected but
were not presented. Taken together, the current findings
extend fundamental understanding of how the human
brain detects and employs predictive relationships to
modulate visual perception.
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